Terminale ST2S 2008-2009

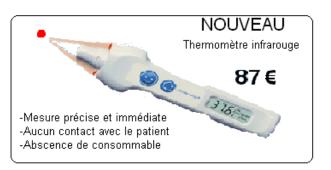
Travaux Dirigés

1. Fonctions	2
1-a : Avec un thermomètre	$\frac{2}{2}$
1-b: Une nouvelle fonction: le logarithme	3
1-c : Bruits et log	5
1-d : Nombre de grippés	7
1-e : Ratatouille	8
1-f : Suites - exponentielles : cigale ou fourmi ?	9
1-g : Le nombre de ménages augmente plus vite que la population	11
1-h : Perfusion	13
1-i: Injection	14
1-j: QCM fonction	15
1-k : Taux de chômage (c)	17
1-1: Restaurant (c)	18
1-m : Epidémie	19
1-n : Glycémie	20
1-o : Glycémie 2	22
2. Probabilités	<u>22</u>
2-a: QCM probas-tableur	22
2-b: Orientation	23
2-c: Crèches	24
2-d : Vrai Faux probas	25
2-e : Test de dépistage	25
2-f: Tableaux croisés, fréquences conditionnelles	27
2-g : Dopage ?	28
3. Statistiques	29
3-a : Taille de nouveaux nés	29
3-b : Chiffres d'affaires	32
3-c : Consommation d'eau minérale	33
3-d: QCM statistiques	34
3-e : Canicule et hôpitaux	37
3-f: Il fait chaud (c)	39
4. Suites	40
4-a: Pourcentages et suite	40
4-b : Dépense énergétique (c)	41
4-c: Pollution	42
4-d : Densité médicale en France	44
4-e : Culture bactérienne	45
4-f · Espérance de vie d'un homme né en France	46

1-a: Avec un thermomètre

ÉTUDE DE FONCTION AVEC UN TABLEUR (niveau 1ère ST2S)

Une entreprise spécialisée dans la fabrication de thermomètres infrarouges a remarqué qu'en vendant 87 euros le thermomètre elle en vendait 300 en un mois et que chaque baisse de prix de un euro entraînait 18 ventes supplémentaires



Deux exemples pour y voir plus clair :

- 1. Déterminer la recette (ce que rapporte la vente) si le prix de vente d'un thermomètre est de 87 €.
- 2. Faire de même si le prix de vente est de 80 €.
- 3. On note x la baisse de prix en euros, on admet que cette baisse de prix ne peut excéder 30 ϵ .

On veut donc avoir 0 en A4 ; 1 en A5 ; ; et 30 en A34. Comment remplir toute la colonne sans avoir à saisir toutes les valeurs ? Donner la formule à entrer en A5 et le faire.

	A	В	С	D	E	F	G
1	baisse de prix en euros x	prix de vente d'un article P(x)	d'articles vendus	recette pour un mois R(x)	côut total pour un mois C(x)	bénéfices pour un mois B(x)	prix de vente possibles
2							
3							
4							

- 4. Pour la suite de l'exercice on veut des formules qui permettent de compléter toute la colonne correspondante en faisant une "Recopie".
- a. On note P(x) le prix de vente d'un article.
- Exprimer P(x) en fonction de x.
- Donner la formule à entrer en B4. Compléter la colonne.
- b. Faire de même avec la colonne C qui correspond à N(x) le nombre d'articles vendus.
- Donner la formule à entrer en C4. Compléter la colonne.
- c. On note R(x) la recette pour un mois.
- Déduire de a. et b. la formule à entrer en D4. Compléter la colonne.
- Exprimer R(x) en fonction de N(x) et P(x).
- Exprimer R(x) en fonction de x.
- 5. On note C(x) le coût total pour un mois. On sait qu'un thermomètre coûte 57 ϵ en matériel et qu'à cela s'ajoutent 5 000 ϵ de dépenses fixes (loyer, salaires, électricité,...).
- Exprimer C(x) en fonction de N(x) puis de x.
- Donner la formule à rentrer en E4. Compléter la colonne.
- 6. On s'intéresse enfin au bénéfice (ce que gagne l'entreprise) qu'on note B(x).
- Donner la formule à rentrer en F4. Compléter la colonne.

- Exprimer B(x) en fonction de R(x) et de C(x).
- En déduire que $B(x) = -18x^2 + 240x + 4000$.
- 7. a. Déterminer pour quelle valeur de x le bénéfice semble maximal puis le prix de vente correspondant d'un thermomètre
- b. Pour plus de clarté on souhaite que les bénéfices négatifs soient en rouge, pour cela prendre la cellule F4 aller dans *Format/Mise en forme conditionnelle*, choisir la condition, puis dans *Format* pour choisir la couleur. Compléter la colonne F.
- 8. En fait l'entreprise voudrait créer un nouvel emploi, mais pour cela il faut que son bénéfice soit supérieur strictement à 4 500 €. Donner la formule à entrer dans la cellule G4 pour que s'affichent uniquement les prix de vente possibles (utiliser : " = SI(condition ;si vrai ; si faux ")
- 9. On considère la fonction définie sur [0;30] par $B(x) = -18x^2 + 240x + 4000$.
- a. A l'aide d'Excel représenter graphiquement *B* (aller dans *Assistant graphique*).
- b. Retrouver graphiquement le résultat de la question 7. : rédiger la réponse.

1-b: Une nouvelle fonction: le logarithme

Présentation:

Cette activité introduit en classe de terminale, la fonction logarithme de base 10 et en donne une application : le décibel. Elle peut être menée en classe entière et nécessite seulement l'usage de calculatrices.

L'étendue des puissances acoustiques va de 10^{-12} Watt = 0,000 000 000 001 Watt (seuil d'audibilité) à plus de 10 000 W (puissance sonore d'un turboréacteur).

La manipulation de tous ces zéros donne le vertige et peut être la source d'erreurs dans les calculs. Heureusement, la découverte des logarithmes au $16^{\text{ème}}$ siècle a permis la naissance d'une unité de gain et d'affaiblissement (variations) plus pratique à utiliser : le **décibel**.

A. Découverte du logarithme

Pour calculer le logarithme (approché) d'un nombre N, il suffit d'appuyer sur la touche log de la calculatrice, puis de taper N et enfin d'afficher le résultat.

Exemple : avec N=100 : le logarithme de 100 vaut 2 noté log(100)=2.

1. Première prise de contact : En utilisant une calculette scientifique.

Calculer:

```
      - log 10 = log 10^1
      réponse : .....

      - log 100 = log 10^2
      réponse : .....

      - log 1 000 = log 10^3
      réponse : .....

      - log 10 000 = log 10^4
      réponse : .....

      - log 100 000 = log 10^5
      réponse : .....
```

Que peut-on conjecturer ?

2. Définition:

Lorsque des nombres sont tels que $10^y = x$, le nombre y est appelé logarithme décimal de x et noté : $\log x$.

Pour tout nombre *x* positif, $\log x = y$ équivaut à $10^y = x$.

Remarque : un logarithme peut prendre n'importe quelle valeur mais le nombre dont on calcule le logarithme doit être positif.

3

On admet que:

```
pour tout nombre a: \log (10^{a}) = a
pour tout nombre a positif: 10^{\log(a)} = a
Quel nombre x vérifie:
```

$$\log x = 2 \ \vdots \ \dots$$

$\log x = 0.3 \ \zeta \dots$
$10^x = 1000 \ \xi$
$10^x = 50 \ $ \$\displaysquare\$
3. Autres propriétés intéressantes :
a. Calculer log 10 =; log 3 =; log 30 =
Quel lien peut-on faire entre le logarithme de 30 (3x10) et ceux de 10 et de 3 ද
Recommencer l'expérience avec $28 = 7 \times 4$ et avec $42 = 7 \times 6$
Comment peut-on généraliser cette relation 🤄 log (a×b) =
b. Calculer log 9 =; 2×log 3 =
Quel lien peut-on faire entre le logarithme de 9 =3² celui de 3 ċ
Recommencer l'expérience avec $8 = 2^3$ et $625 = 5^4$
Quelle relation peut-on conjecturer $\stackrel{?}{\leftarrow} \log(a^n) = \dots$

B. Loi de Fechner et Décibel

1. Introduction des décibels :

Entre certaines mesures physiques et les sensations que nous éprouvons, il existe une relation, formulée pour la première fois au XIXe siècle par <u>Gustav Théodore Fechner</u> (1801-1887), qui s'énonce, de façon très grossière :

La sensation varie comme le logarithme de l'excitation.

Fechner prenait l'exemple de violons. Entre 1 et 10 violons jouant à l'unisson, l'oreille ressent le même accroissement de niveau sonore qu'entre 10 et 100 violons ou entre 100 et 1000. Cet accroissement est appelé le bel. Dans la vie courante, on utilise plus volontiers le décibel ou dixième de bel. (1 Bel = 10 Décibels) car, physiologiquement, le décibel (dB) est la plus petite variation d'intensité sonore perceptible par l'oreille humaine.

Variation de puissance sonore	1	× 10	× 100	× 1 000	× 10 000
Variation de la sensation (en bels)	0	+ 1	+ 2	+ 3	+ 4
Variation de la sensation (en dB)	0	+ 10	+ 20	+ 30	+ 40

a. Quelle	relation	peut-on	envisager	entre	les	nombres	de	la	première	ligne	(notés	P)	et	ceux	de	la
seconde (notés S) 🤄	2														

S (en bels) =

On en déduit la relation entre les variations de sensation et puissance : S (en dB) = 10 log P

b. En déduire la relation entre les variations de puissance et de sensation en décibels :

c. Le bel et le décibel sont des unités de variations. Quand la sensation S augmente de s dB, la puissance

est multipliée par $10^{\overline{10}}$. Si on a une variation de 7 dB, par combien la puissance sonore a-t-elle été multipliée ξ

d. Quand la puissance P est multipliée par 10, la sensation augmente de 1 bel = 10 décibels. Quand la puissance est multipliée par k, la sensation augmente de 10 log k décibels.

A quelle variation en dB correspond un doublement de la puissance sonore ¿

- e. Si une machine a un niveau sonore de 60 dB, deux mêmes machines émettent une puissance sonore double mais le bruit perçu est de 63 dB (et non pas de 120 dB, les dB ne s'ajoutent pas).
- 2. Échelle des décibels acoustiques.

Si on fixe à 0 dB le seuil d'audibilité moyen pour l'être humain, la table ci-dessous donne (en dB) le niveau sonore de quelques objets courants.

	de queiques objets courants.		
-	Avion au décollage	130	Douloureux
	Marteau-piqueur	120	Douloureux
	Concert et discothèque	110	Risque de surdité
	Baladeur à puissance maximum	100	Pénible
	Moto	90	Pénible
(4)	Automobile	80	Fatigant
	Aspirateur	70	Fatigant
	Grand magasin	60	Supportable
•	Machine à laver	50	Agréable
	Bureau tranquille	40	Agréable
	Conversation à voix basse	35	Agréable
	Chambre à coucher	30	Agréable
	Vent dans les arbres	10	Calme
	Seuil d'audibilité	0	Calme
Α 1 .	1.1		

Au vu de ce tableau,

- a. Quel sera, en décibel le niveau sonore d'une classe où les 30 élèves ont une conversation à voix basse avec leur voisin (15 conversations) ?
- b. Quel sera le niveau sonore dans une laverie ou les 8 machines à laver fonctionnent en même temps 🕹
- c. Quel sera le niveau sonore au départ d'un grand prix moto quand les 22 concurrents démarreront simultanément ?
- d. Quelle différence de puissance y a-t-il entre le volume normal d'un baladeur (50 dB) et sa puissance maximale ?
- e. Une Guêpe en vol a un niveau sonore de 10 dB combien d'individus doit contenir au minimum un essaim pour qu'il fasse plus de bruit qu'un frigo (38 dB) ?

1-c: Bruits et log

Partie A

Pour mesurer le niveau sonore d'un bruit on utilise fréquemment le nombre N appelé « niveau de puissance » et exprimé en décibels (dB). N est donné par la relation : $N = \log \left(\frac{I}{I_0} \right)$ où I est l'intensité acoustique du bruit exprimée en watts par m² (W.m²) et I_0 est l'intensité correspondant au seuil d'audibilité (intensité la plus faible perçue par l'oreille pour un être humain).

- 1. Calculer N en dB pour $I = I_0$. Pouvait-on s'attendre à ce résultat ξ
- 2. On estime que I_0 vaut en moyenne $10^{-12}~\rm W.m^{-2}$ et que l'intensité acoustique correspondant au seuil de la douleur pour un être humain est égale à $1~\rm W.m^{-2}$. Calculer en dB le niveau N_m correspondant.
- 3. Quand deux sources émettent un bruit, les intensités acoustiques I perçues en un point donné s'additionnent.

Un lave-linge et un lave-vaisselle sont placés côte à côte ; les niveaux sonores pour ces deux appareils sont identiques et égaux tous les deux à 50 dB.

Quel est le niveau sonore mesuré si ces deux appareils fonctionnent simultanément ?

4. On sait que si I_1 et I_2 sont les intensités acoustiques mesurées respectivement aux distances d_1 et d_2

d'une source sonore, elles sont alors liées par la relation :
$$\frac{I_2}{I_1} = \left(\frac{d_1}{d_2}\right)^2$$
.

On note N_1 et N_2 les niveaux sonores correspondants, exprimés en décibels. On suppose que $d_2 = kd_1$ où k est une constante donnée.

Exprimer N_2 en fonction de N_1 .

5. Application numérique : Pour une personne habitant à 1 km d'un aéroport, $I_1 = 10^{-4}$ W.m⁻².

Calculer le niveau sonore pour une autre personne habitant à 5 km de l'aéroport.

Partie B

Le danger d'une exposition au bruit dépend de deux facteurs :

- le niveau sonore (x_n) ;
- la durée de l'exposition (y_n) .

Le niveau sonore est exprimé en décibels, dont l'abréviation est dB. Par exemple :

- 50 dB est le niveau habituel de conversation ;
- 85 dB est le seuil de nocivité (pour une exposition de 8 heures par jour).

Des durées limites d'exposition quotidienne à une phase bruyante ont été calculées et intégrées à la réglementation. Les résultats sont donnés dans le tableau suivant.

Durée maximale d'exposition en heures par jour (y _i)	$z_i = \log(y_i)$
<i>y</i> ₀ =8	
4	
2	
1	
0,5	
0,25	
	d'exposition en heures par jour (y_i) $y_0=8$ 4 2 1 $0,5$

Ainsi être exposé 8 heures à 85 dB est exactement aussi dangereux que d'être exposé 1 heure à 94 dB.

- 1. a. Montrer que les six niveaux sonores donnés dans la première colonne du tableau ci-dessus sont des termes successifs d'une suite arithmétique.
- b. On suppose que l'évolution reste la même. Déterminer le terme x_{12} .
- 2. a. Montrer que les durées maximales d'exposition, exprimées en heures par jour, données dans la deuxième colonne sont des termes successifs d'une suite géométrique.
- b. On suppose que l'évolution reste la même. Déterminer le terme y_{12} . Arrondir à la seconde la plus proche.
- 3. a. On pose $z_i = \log(y_i)$.

Compléter le tableau ci-dessus dans lequel on fera figurer les valeurs approchées de z_i arrondies à 10^{-1} près.

- b. Placer les points de coordonnées $(x_i; z_i)$ dans un repère orthogonal. Prendre comme unités graphiques : 0,5 cm pour une unité sur l'axe des abscisses et 1 cm pour 0,1 sur l'axe des ordonnées. Graduer l'axe des abscisses à partir de 85.
- c. Calculer les coordonnées du point moyen G du nuage.
- 4. Les points du nuage semblent alignés.
- a. Démontrer qu'une équation de la droite D passant par le point A d'abscisse 85 et le point B d'abscisse 94, est z = -0.1x + 9.4.
- b. Le point G appartient-il à la droite $D \stackrel{?}{\circ}$
- 5. On admet que la droite D constitue un bon ajustement du nuage de points.

Un concert de rock atteint 120 dB.

Déterminer par le calcul pendant combien de temps, exprimé en secondes, on peut l'écouter pour que les normes en vigueur soient respectées :

1-d: Nombre de grippés

Modélisation de l'évolution du nombre de grippés en France Métropolitaine en 2002.

Lors de l'épidémie de grippe de l'hiver 2002, le réseau Sentinelles, chargé au sein de l'INSERM de la situation épidémiologique en France, a observé que la maladie avait atteint le maximum de personnes lors de la quatrième semaine. Il s'est ensuite intéressé à l'incidence de cette épidémie, c'est-à-dire au nombre de cas déclarés pour 100 000 habitants, de la cinquième à la dixième semaine et a transmis le tableau ci-dessous.

Semaine	5	6	7	8	9	10
Incidence	848	546	286	197	107	72

1. Représenter à l'aide d'un tableur le nuage de points correspondant au tableau.

En observant ce graphique, justifier que l'évolution de l'incidence ne peut pas être modélisée par une suite arithmétique (u_n) où n est le rang de la semaine et u_n correspond à l'incidence pour la semaine n.

2. On choisit de modéliser l'évolution de l'incidence par une suite géométrique (v_n) où n est le rang de la semaine et v_n correspond à l'incidence pour la semaine n.

On donne son premier terme $v_0 = 11\,000$ et sa raison q = 0.6.

- a. En utilisant ce modèle, déterminer le taux de diminution, en pourcentage, du nombre de malades d'une semaine à la suivante.
- b. Compléter le tableau donné ci-dessous.

Semaine <i>n</i>	5	6	7	8	9	10
Données	848	546	286	197	107	72
v_n	855					
Écart à la valeur	7					
Carré de l'écart	49					

- c. Calculer la moyenne des carrés des écarts.
- d. On admet que la modélisation est convenable lorsque cette moyenne des carrés des écarts entre les termes de la suite géométrique et les incidences réellement observées est inférieure à 289.

La suite géométrique choisie est-elle une modélisation convenable du tableau de données ?

3. On souhaite faire une estimation plus fine des données en modélisant la situation par une fonction exponentielle.

On admet que la fonction f, définie sur [5;10] par $f(x)=10500\times(0,6049)^x$ est une bonne modélisation de l'évolution de l'incidence. Dans un repère orthogonal bien choisi, tracez la courbe C représentant la fonction f.

a. Calculer f(8). Quelle interprétation de ce résultat peut-on donner pour la modélisation de la situation ξ b. On considère que l'épidémie est terminée lorsque l'incidence est inférieure à 90 cas pour 100 000 habitants.

Résoudre graphiquement l'inéquation $f(x) \le 90$ en laissant apparents les traits de construction. Donner une estimation en jours du résultat.

d. Retrouver par le calcul l'ensemble des solutions de l'inéquation $f(x) \le 90$.

1-e: Ratatouille

On administre quotidiennement un médicament à une population de 1000 souris malades.

Au bout d'une semaine on fait un test et on remarque que 6 % des souris ne présentent plus la maladie.

On recommence le test chaque semaine et on obtient le tableau suivant :

Nombre de semaines écoulées	0	1	2	3	4
Nombre de souris malades	1000	940	884	831	781

- 1. En utilisant les données précédentes, montrer que le nombre de souris encore malades après n semaines de traitement (avec n entier tel que $0 \le n \le 4$) est proche de chacun des cinq premiers termes d'une suite géométrique de premier terme 1000 dont on déterminera la raison à 10^{-2} près.
- 2. On admet que, chaque semaine, 6 % des souris encore malades à la fin de la semaine précédente ont guéri.

Pour tout entier naturel n on note u_n le nombre de souris encore malades après n semaines de traitement. On a alors : $u_0 = 1000$.

- a. Sous l'hypothèse qui vient d'être faite, déterminer la nature et les caractéristiques de la suite (u_n) .
- b. En déduire que pour tout entier $n: u_n = 1000 \times 0,94^n$.
- 3. Soit f la fonction définie sur l'intervalle $I = \left[0; \frac{365}{7}\right]$ par : $f(x) = 1000 \times 0,94^x$. Ainsi, pour tout entier naturel $n \in I$, on a $f(n) = u_n$.

On décide de modéliser par la fonction f le nombre de souris encore malades après une durée x exprimée en semaines (x n'est pas forcément un nombre entier de semaines, et on suppose ce modèle valable pour une année complète).

- a. En utilisant ce modèle exponentiel, déterminer le nombre de souris guéries dès le premier jour et le pourcentage (arrondi à 1 %) de souris encore malades après un an.
- b. Soit g la fonction définie sur I par : $g(x) = 0.94^x$. Donner le sens de variation de la fonction g, en précisant les résultats de cours utilisés.
- c. On admet que les fonctions f et g ont les mêmes variations sur l'intervalle I. En déduire le tableau de variation de la fonction f sur l'intervalle I.
- 4. Pour représenter graphiquement la fonction f, on a utilisé un tableur. Pour la feuille de calcul créée :
 - à la ligne 1, figure le nombre de semaines écoulées ;
 - à la ligne 2, figure le nombre de souris malades au moment considéré.

Quelle instruction a-t-on écrite dans la cellule B2 pour obtenir son contenu et remplir les cellules C2 à G2 en utilisant la poignée de recopie pour obtenir la feuille de calcul du tableur dont on donne la copie d'écran cidessous ?

	Α	В	С	D	Е	F	G	Н	I	J
1	Nombre de semaines écoulées	0	5	10	15	20	25	30	35	40
2	Nombre de souris malades	1000	734	539	395	290	213	156	115	84

- 5. Avec l'assistant graphique tracer la représentation graphique de la fonction f dans un repère orthogonal.
- a. Déterminer graphiquement, en laissant apparents les traits de construction et en arrondissant les valeurs à l'unité :
 - le nombre N_1 de semaines nécessaires pour que le quart des souris traitées soient guéries ;
 - le nombre N_2 de semaines nécessaires pour que la moitié des souris traitées soient guéries ;
 - le nombre N_3 de semaines nécessaires pour que les trois quarts des souris traitées soient guéries.
- 6. On veut estimer plus précisément au bout de combien de temps la moitié des souris seront guéries.
- a. Montrer que la solution de l'équation f(x) = 500 est donnée par : $x = \frac{\log(0.5)}{\log(0.94)}$.
- b. En déduire une valeur approchée au dixième de N_2 , puis le nombre de jours nécessaires pour que la moitié des souris soient guéries.

1-f: Suites - exponentielles: cigale ou fourmi?

A. Monsieur Cigale dispose le premier janvier 2007 d'un capital C_0 =1000 euros. Le tableau suivant donne l'évolution de ce capital entre le 1^{er} janvier 2007 et le 1^{er} janvier 2011 :

Date	1/1/2007	1/1/2008	1/1/2009	1/1/2010	1/1/2011
Capital	1000	900	810	729	656,1

- 1. Quel est le pourcentage de la baisse entre le 1er janvier 2007 et le 1er janvier 2008 &
- 2. Justifier que les capitaux successifs sont les termes d'une suite géométrique dont on donnera la raison.
- 3. En supposant que l'évolution reste la même, on note C_n le montant du capital au premier janvier de l'année (2007 + n).
- a. Exprimer C_n en fonction de n.
- b. Quel est le sens de variation de la suite (C_n) ? Justifier la réponse.
- c. Quel est le montant prévisible du capital de Mr Cigale, arrondi à 1€ près au 1er janvier 2015 €
- d. À partir de quelle année ce capital sera-t-il inférieur à 200 € ♀
- B. Madame Fourmi place, le premier janvier 2007, un capital $F_0 = 150 \, \epsilon$ au taux annuel de 8% à intérêts composés.
- 1. Calculer les valeurs F_1 et F_2 acquises par ce capital au 1^{er} janvier 2008 et au 1^{er} janvier 2009.
- 2. F_n désigne la valeur acquise par ce placement au 1^{er} janvier de l'année (2007 + n).

Montrer que (F_n) est une suite géométrique dont on précisera la raison et le premier terme.

- 3. a. Exprimer F_n en fonction de n.
- b. Quel est le sens de variation de la suite (F_n) ξ Justifier la réponse.
- c. Quel est le montant prévisible du capital de Mme Fourmi, arrondi à 1€ près au 1er janvier 2015 €

http://laroche.lycee.free.fr

- d. À partir de quelle année ce capital aura-t-il triplé ?
- C. Les calculs des différents capitaux sont effectués sur un tableur.

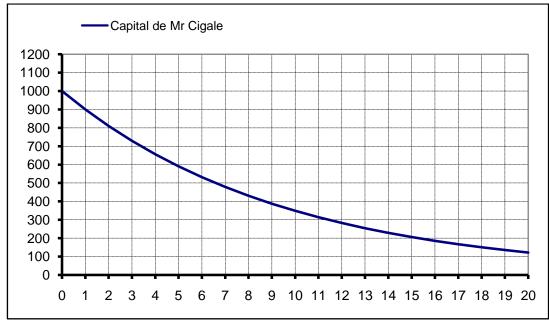
Tous les résultats sont arrondis à 0,01 près.

	Α	В	С	D	Е
	Date	n	Capital de	Capital de	Somme des
1	Date	"	Mr Cigale	Mme Fourmi	deux capitaux
2	01/01/2007	0	1000,00	150,00	
3	01/01/2008	1	900,00		
4	01/01/2009	2	810,00		
5	01/01/2010	3	729,00		
6	01/01/2011	4	656,10		
7	01/01/2012	5	590,49		
8	01/01/2013	6	531,44		
9	01/01/2014	7	478,30		
10	01/01/2015	8	430,47		
11	01/01/2016	9	387,42		
12	01/01/2017	10	348,68		
13	01/01/2018	11	313,81		
14	01/01/2019	12	282,43		
15	01/01/2020	13	254,19		
16	01/01/2021	14	228,77		
17	01/01/2022	15	205,89		
18	01/01/2023	16	185,30		
19	01/01/2024	17	166,77		
20	01/01/2025	18	150,09		
21	01/01/2026	19	135,09		
22	01/01/2027	20	121,58		

- 1. Quelle est la formule entrée en B3, qui a été recopiée vers le bas jusqu'en B22 ?
- 2. Quelle est la formule entrée en C3, qui a été recopiée vers le bas jusqu'en C22 ¢ Retrouve-t-on les résultats obtenus aux questions A. 3. c. et d. ¢
- 3. Quelle est la formule à entrer en D3, puis à recopier vers le bas jusqu'en D22, pour obtenir les capitaux de Mme Fourmi & À la calculatrice, compléter la colonne D du tableau.
- 4. On appelle C et F les fonctions définies sur l'intervalle [0;20] par :

$$C(x) = 1000 \times 0.9^x$$
 et $F(x) = 150 \times 1.08^x$.

À partir des valeurs du tableau ci-dessus, le tableur a représenté la fonction ${\cal C}.$



a. Comment peut-on retrouver graphiquement les résultats obtenus aux questions A. 3. c. et d. 3.

- b. Représenter sur ce même graphique la fonction *F*.
- c. Déterminer, graphiquement, le sens de variation de chacune des fonctions C et F sur [0;20].

Ces résultats sont-ils surprenants & Justifier la réponse.

- d. Déterminer, graphiquement, à partir de quelle année le capital de Mme Fourmi sera supérieur à celui de Mr Cigale.
- e. Résoudre, par le calcul, l'inéquation $150 \times 1,08^x \ge 1000 \times 0,9^x$. Peut-on retrouver le résultat de la question précédente ξ
- 5. On s'intéresse à la somme des deux capitaux au fil des années.
- a. Que peut-on penser de l'évolution de la somme des deux capitaux $C_n + F_n$, en fonction de $n \in \mathbb{R}$
- b. Quelle formule est à entrer en E2 puis à recopier vers le bas jusqu'en E22 pour obtenir ces sommes & Mentalement, compléter la colonne E du tableau.
- c. Compléter alors la réponse faite à la question 5. a.
- d. Représenter, sur le graphique de la question 4., la fonction C+F définie sur l'intervalle [0;20].
- e. Etudier graphiquement son sens de variation.

1-g: Le nombre de ménages augmente plus vite que la population

Le nombre de ménages tend à croître plus vite que la population : +1,24 % par an en moyenne pour le nombre de ménages entre 1975 et 2005, +0,48 % pour la population (voir tableau). En effet, le nombre moyen de personnes par ménage tend à baisser : égal à 2,9 en 1975, il n'est plus que de 2,3 en 2005.

	1975	1982	1990	1999	2005	Évolution annuelle moyenne sur la période 1975-2005
Population (en milliers)	52599	54296	56652	58492	60702	+ 0,48 %
Nombre de ménages (en milliers)	17745	19589	21542	23776	25689	+ 1,24 %
Nombre moyen de personnes par ménage	2,88	2,70	2,57	2,40	2,31	- 0,74

Source: INSEE

Partie A

On suppose que le nombre de ménages en France l'année (1975 + n) peut être modélisé par la suite géométrique (u_n) de premier terme $u_0 = 17745$ et de raison 1,0124.

- 1. Exprimer u_{n+1} en fonction de u_n .
- 2. On utilise une feuille de calcul d'un tableur pour calculer les termes de la suite (u_n) .

On a recopié ci-dessous quelques parties de cette feuille de calcul.

	Α	В
1	N	u_n
2	0	17745
3	1	
4	2	
5	3	
16	14	21086,6
17	15	21348,0
18	16	21612,8
19	17	21880,8
20	18	22152,1

57	57	35821,8
58	58	36266,0
59	59	36715,7
60	60	37171,0
61	61	37631,9

- a. Quelle formule peut-on entrer en B3, puis recopier vers le bas, pour compléter avec les résultats cidessus la colonne B $\stackrel{\circ}{\varsigma}$
- b. Quelle formule contiendra la cellule B4?
- c. Quelle valeur, arrondie au dixième, affichera la cellule B4 ?
- 3. À la ligne 17 de la feuille de calcul apparait 21 348 comme valeur approchée de u_{15} . À quelle valeur du tableau de l'INSEE peut-on la comparer $\stackrel{>}{\varsigma}$
- 4. Utiliser les données de la feuille de calcul du tableur pour déterminer en quelle année, selon ce modèle, le nombre de ménages en France dépassera 35 490 (soit deux fois plus qu'en 1975) ?

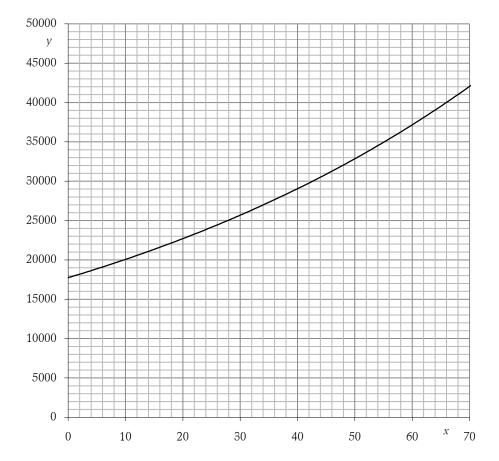
Partie B

Soit f la fonction définie sur [0; 70] par : $f(x) = 17745 \times 1,0124^x$.

- 1. Vérifier que $f(0) = u_0$, $f(1) = u_1$ et $f(2) = u_2$.
- 2. On suppose que le nombre de ménages en France l'année (1975 + x) peut-être modélisé par f(x), arrondi à l'unité.

Le graphique ci-dessous donne la courbe représentative de f dans un repère orthogonal.

Déterminer graphiquement en quelle année, selon ce modèle, il y aura 35 490 ménages en France (soit deux fois plus qu'en 1975).



3. Utiliser la fonction logarithme décimal pour retrouver par le calcul le résultat obtenu au 2.

1-h: Perfusion

Le débit D d'une perfusion est fonction du volume V de médicament à administrer et de la durée t de la perfusion.

V est exprimé en cm³, t en heures et D en gouttes par minutes (gouttes.mn⁻¹).

Pour le type de perfusion envisagé dans cet exercice, on suppose qu'une goutte de médicament a un volume de $0.05~\rm cm^3$.

- 1. a. Vérifier que pour un volume de 1 $500~\rm cm^3$ à perfuser pendant 6 heures, le débit doit être de $83~\rm gouttes.mn^{-1}$.
- b. Démontrer que : $D = \frac{V}{3t}$.
- 2. Pour déterminer le débit des perfusions, les infirmières disposent d'une table telle que celle représentée ci-dessous, reproduite sur une feuille automatisée de calcul. Pour des raisons d'ordre médical, le débit ne peut être inférieur à 5 gouttes.min⁻¹ et ne doit pas excéder 167 gouttes.min⁻¹ (cases grisées).

	Α	В	С	D	I	F	G	Н	I	J	K		
1				Durée t de la perfusion (en h)									
2			0,5	1	2	3	4	6	8	12	24		
3	'à er	50	33	17	8	6	4	3	2	1	1		
4	Volume V à administrer	100	67	33	17	11	8	6	4	3	1		
5	Volum admini	125	83	42	21	14	10	7	5	3	2		
6	V _C ad	250	167	83	42	28	21	14	10	7	3		

7	500	333	167	83	56	42	28	21	14	7
8	750	500	250	125	83	63	42	31	21	10
9	1000	667	333	167	111	83	56	42	28	14
10	1500	1000	500	250	167	125	83	63	42	21
11	2000	1333	667	333	222	167	111	83	56	28
12	2500	1667	833	417	278	208	139	104	69	
13	3000	2000	1000	500	333	250	167	125		

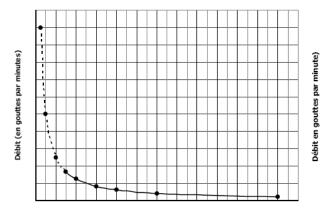
a. Parmi les formules suivantes, quelle est celle que l'on peut choisir d'écrire dans la cellule C3 et qui, par recopie automatique dans la plage de cellules C3 à K13, permet d'obtenir les débits indiqués ?

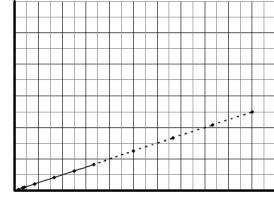
= B3/(3*C2)	= \$B3/(3*C\$2)	= B\$3/(3*\$C2)	= \$B\$3/(3*\$C\$2)

- b. Compléter les 3 cellules non renseignées en arrondissant à l'unité.
- 3. a. Pour un volume V donné, D semble-t-il être une fonction croissante ou décroissante de la durée de la perfusion ξ
- b. Pour une durée t de perfusion donnée, D est-il une fonction croissante ou décroissante du volume de la perfusion ξ
- 4. Les deux documents ci-après représentent :
 - Pour l'un, D en fonction de t ($0 \le T \le 24$) pour 1 500 cm³ de médicament à perfuser ;
 - Pour l'autre, D en fonction de V ($0 \le v \le 3000$) pour 2 heures de perfusion.
- a. Compléter les deux graphiques en y indiquant dans chaque cas quelle est la variable en abscisse (V ou t), puis en graduant successivement l'axe des abscisses et l'axe des ordonnées.

Que représentent les parties de courbes en pointillés ?

b. Sur une feuille de papier millimétré, tracer dans un repère orthogonal la courbe représentant D en fonction de V pour une durée de perfusion de δ heures, puis dans un nouveau repère, celle représentant D en fonction de δ pour δ 0 cm³ de médicament à perfuser.



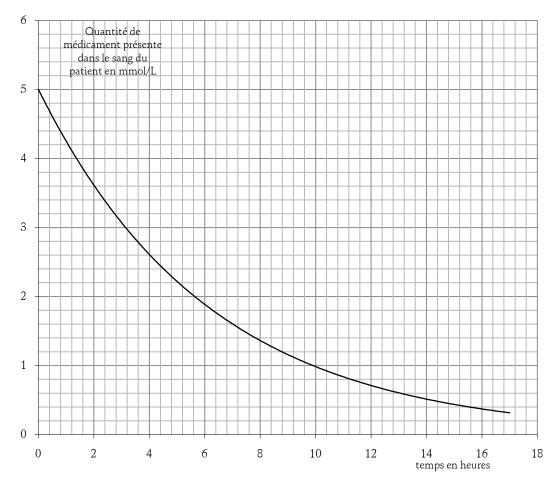


1-i: Injection

Afin de soigner un patient dans un centre hospitalier, un médecin décide de lui injecter un médicament. Le graphique ci-dessous donne la quantité de médicament présente dans le sang de ce patient en fonction du temps écoulé depuis l'injection.

Répondre aux questions suivantes en s'appuyant sur le graphique ci-dessous, en laissant apparents les traits de construction.

- 1. Aussitôt après l'injection, quelle quantité de médicament est présente dans le sang du patient &
- 2. Quelle quantité de médicament reste-t-il dans le sang du patient au bout de 8 heures &
- 3. À quelle heure la quantité de médicament présente dans le sang du patient est-elle de 2,4 mmol.L⁻¹ ?
- 4. Comment évolue la quantité de médicament présente dans le sang en fonction du temps ?



- 5. a. Tracer les tangentes à la courbe de f aux points d'abscisses respectives 2 heures et 13 heures.
- b. Déterminer graphiquement les coefficients directeurs de ces tangentes.
- c. Sachant que ces coefficients directeurs correspondent à la vitesse d'évolution de la quantité de médicament présente dans le sang, que peut-on dire sur l'**évolution** de cette vitesse ?
- 6. La notice du médicament précise que le produit reste efficace tant que la quantité présente dans le sang est supérieure à 1 mmol.L^{-1} . Par ailleurs le protocole infirmier indique, pour ce médicament, de réaliser une nouvelle injection toutes les 8 heures. Cela entraîne alors une augmentation de la quantité de médicament présente dans le sang de $3,6 \text{ mmol.L}^{-1}$.
- a. À partir de quelle heure le médicament n'est-il plus efficace ?
- b. Le respect du protocole infirmier va-t-il permettre au médicament de rester efficace sans interruption &
- c. Modifier le graphique précédent pour représenter l'évolution de la quantité de médicament présente dans le sang du patient en fonction du temps en tenant compte de la deuxième injection réalisée au bout de 8 heures.
- d. Donner alors le tableau de variation correspondant à cette nouvelle courbe sur l'intervalle de temps [0; 17].

1-j: QCM fonction

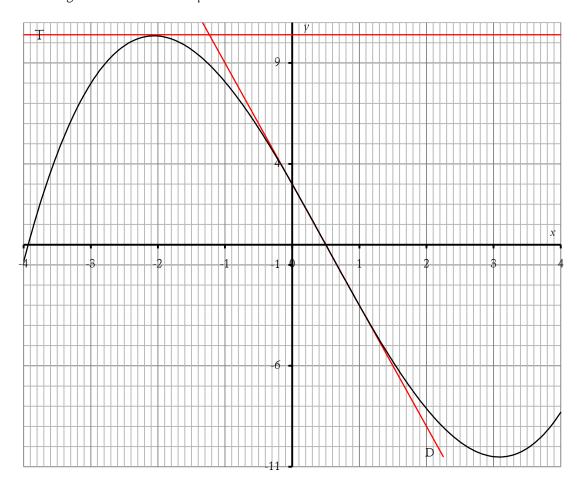
Cet exercice est un Questionnaire à Choix Multiple.

Pour chacune des questions, une ou plusieurs des réponses proposées (a, b, c ou d) sont correctes.

On considère la fonction f définie sur l'intervalle [-4; 4], dont la représentation graphique sur cet intervalle est donnée dans un repère orthogonal ci-dessous par la courbe C.

On admet que les points de coordonnées $\left(-2;\frac{31}{3}\right)$ et $\left(3;-\frac{21}{2}\right)$ sont des extremums de f.

T est la tangente à la courbe C au point d'abscisse -2; D est la tangente à la courbe C au point d'abscisse 0.



	a	ь	с	d
1	Sur l'intervalle [-2;3], $f(x) \le 0$.	Sur l'intervalle [–2;3], <i>f</i> est décroissante.	Sur l'intervalle $[-2;3]$, $f(x)$ a pour maximum 2.	Sur l'intervalle [–2;3], <i>f</i> est affine.
2	f(-2) = 0	f'(-2) = 0	f'(-2) = f'(3)	T a pour équation $y=31/3$.
3	f'(0) > 0	f'(0) < 0	f'(0) = 0	f'(0) = 3
4	Sur l'intervalle [1;3], $f(x) \le 0$ donc $f'(x) \le 0$	Sur l'intervalle [1;3], $f'(x) \le 0$ donc $f(x) \le 0$.	Sur l'intervalle [1;3], f est décroissante donc $f'(x) \le 0$.	Sur l'intervalle [1;3], $f'(x) \le 0$ donc f est décroissante.
5	L'équation $f(x) = 2$ admet exactement deux solutions sur l'intervalle $[-4;4]$	L'équation $f(x) = 2$ admet exactement deux solutions sur l'intervalle [1;3]	L'équation $f(x) = 2$ n'admet pas de solution négative sur l'intervalle $[-4;4]$	L'équation $f(x) = 3$ a pour unique solution 0 sur l'intervalle $[-4;4]$
6	La droite D a pour équation $y = -6x + 3$	Le coefficient directeur de D est $f'(3)$.	D passe par le point de coordonnées (3, –15)	La droite D a pour équation $y = -x + 3$

1-k: Taux de chômage (c)

Partie A : Étude d'une fonction

Soit la fonction *f* définie sur l'intervalle I = [0; 13] par : $f(x) = 0.02x^3 - 0.39x^2 + 2.16x + 5$.

Soit (C) la courbe représentative de f dans un repère orthonormal (unité graphique : 1 cm).

- 1. Calculer f'(x) et montrer que f'(x) = (0.06x 0.24)(x 9).
- 2. Dresser le tableau de variations de la fonction f sur l'intervalle I = [0; 13].
- 3. À l'aide de votre calculatrice, recopier et compléter la tableau suivant puis tracer la courbe (C) sur une feuille de papier millimétrée.

X	0	1	2	4	5	7	9	11	13
f(x)									

Partie B: Application

On a étudié l'évolution du taux de chômage de la population active entre les années 1980 et 1993. En prenant pour année de référence l'année 1980, on peut considérer le tableau suivant, où x représente le rang de l'année par rapport à l'année 1980.

Année	1980	1981	1982		1992	1993
X	0	1	2	•••	12	13

On admet alors que le taux de chômage de l'année de rang x est égal à f(x), où f est la fonction étudiée dans la partie A.

- 1. Utiliser les résultats de la première partie pour répondre graphiquement aux questions suivantes : (on laissera apparents les traits permettant de justifier votre réponse).
- a. Entre 1980 et 1990, en quelle année le taux de chômage a-t-il été maximum ?
- b. Entre 1980 et 1993, sur quelle période y a-t-il eu décroissance du taux de chômage ?
- c. Entre 1980 et 1993, en quelles années le taux de chômage a-t-il été supérieur à 8 ද
- 2. Déterminer l'équation de la tangente à (C) au point d'abscisse 0. Tracer cette tangente sur votre graphique. Quelle signification concrète (du point de vue du chômage) donneriez vous au coefficient directeur de cette tangente $\stackrel{?}{\varsigma}$

Correction

Partie A :

1. Pour tout x, $f'(x) = 0.06x^2 - 0.78x + 2.16$.

Or
$$(0.06x-0.24)(x-9) = 0.06x^2 - 0.54x - 0.24x + 2.16 = 0.06x^2 - 0.78x + 2.16$$
. Ok.

2. f'(x) = 0 équivaut à $0.06x = 0.24 \Leftrightarrow x = 4$ ou x = 9.

On en déduit le tableau de variations :

X	0		4		9		13
Signe de 0,06 <i>x</i> – 0,24		_	0	+		+	
Signe de $x - 9$		_		_	0	+	
Signe de $f'(x)$		+	0	_	0	+	
Variations de f	5	/	8,7		7,4	<u></u>	11,1

3. Résultats arrondis au dixième.

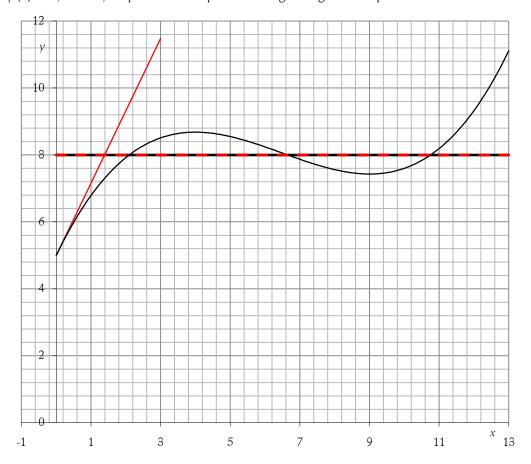
X	0	1	2	4	5	7	9	11	13
f(x)	5	6,8	7,9	8,7	8,6	7,9	7,4	8,2	11,1

Partie B:

- 1. a. D'après le graphique, le taux de chômage est maximum pour x = 13 soit en 1993.
- b. Il y a eu décroissance du taux de chômage pour x $x \in [4; 9]$ soit entre 1984 et 1989.
- c. Le taux de chômage est supérieur à 8 pour x = 3, 4, 5, 6, 11, 12, 13, soit de 1983 à 1986 et de 1991 à 1993.
- 2. L'équation de la tangente à (C) au point d'abscisse 0 est : y = f'(0)(x 0) + f(0).

Or d'après la question A. 1., f'(0) = 2,16 et f(0) = 5 donc y = 2,16x + 5.

Comme f'(0) = 2,16 > 0, on peut déduire que le chômage a augmenté rapidement aux alentours de 1980.



1-1: Restaurant (c)

Un restaurant d'une station balnéaire ouvre au début du printemps. Le gérant relève le nombre de repas servis chaque semaine. Les résultats des quatre premières semaines sont donnés dans le tableau suivant :

Rang de la semaine : x_i	1	2	3	4
Nombre de couverts : y_i	78	108	159	224

1. Représenter graphiquement, sur le graphique joint, le nuage de points associé à la série $(x_i; y_i)$.

On prendra 2 cm pour représenter 1 semaine sur l'axe des abscisses et 1 cm pour représenter 20 couverts sur l'axe des ordonnées.

- 2. Soit D la droite d'ajustement affine de y en x par la méthode des moindres carrés.
- a. Déterminer, à l'aide de la calculatrice, une équation de la droite D, de la forme y = ax + b.
- b. Tracer D sur le graphique de la question 1.

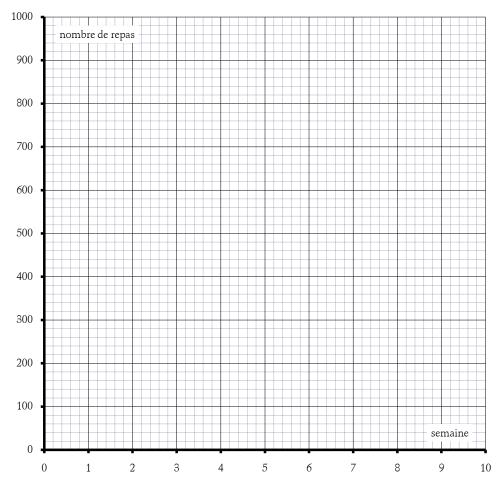
- c. Si l'on retient cet ajustement affine, calculer le nombre de couverts, arrondi à l'entier, prévisible pour la cinquième semaine.
- 3. L'allure du nuage de points précédent permet d'envisager un ajustement exponentiel.

On considère la fonction f définie sur l'intervalle [1; $+\infty$ [par : $f(x) = 54 \times (1,43)^x$.

a. Compléter le tableau suivant avec les valeurs f(x) arrondies à l'unité.

Rang de la semaine : x	1	2	3	4
f(x)				

- b. Sur le graphique de la question 1, tracer la courbe représentative C de la fonction f sur l'intervalle [1;8].
- c. Si l'on retient cet ajustement exponentiel, quel nombre de couverts peut-on prévoir la cinquième semaine ?
- 4. Le restaurant a une capacité maximum de 810 couverts par semaine.
- a. Résoudre par le calcul l'inéquation : $54 \times (1,43)^x > 810$.
- b. Si la fréquentation du restaurant évolue suivant ce modèle exponentiel, quel est le rang de la semaine où le gérant commencera à refuser des clients ?



1-m: Epidémie

Lors d'une épidémie on a relevé chaque jour le nombre de cas déclarés. Les résultats obtenus sont dans le tableau suivant.

Rang du relevé x_i	1	2	3	4	5	6

Léon , statisticien au ministère de la Santé, souhaite prévoir avec le plus de fiablité possible le nombre de cas qui vont apparaître dans la semaine qui vient.

Partie A

- 1. Tracer le nuage de points $M_i(x_i; y_i)$ correspondant.
- 2. Léon envisage un ajustement par une droite : cela semble-t-il raisonnable ?
- 3. Donner l'équation de la droite d'ajustement obtenue par la méthode des moindres carrés. Calculer alors les prévisions du nombre de malades pour les 7 jourss suivants.
- 4. Les relevés du nombre de cas arrivent trois jours plus tard sur le bureau de Léon : la situation risque de tourner à la catastrophe... Pourquoi ?

Rang du relevé x_i	1	2	3	4	5	6	7	8	9
Nombre de cas y_i	600	690	794	913	1045	1205	1380	1602	1815

Partie B

Léon décide de prendre le taureau par les cornes et s'installe devant son tableur : il va chercher un ajustement plus performant.

- 1. Compléter le nuage de points précédents.
- 2. Parmi les types d'ajustement suivants lesquels vous semblent les plus intéressants (classez les par ordre de préférence) de Linéaire Logarithmique Exponentiel Polynomial
- 3. Léon opte pour un ajustement exponentiel. Pour ce faire il créé tout d'abord un nouveau tableau.

Rang du relevé x_i	1	2	3	4	5	6	7	8	9
$Y_i = \log(y_i)$	2,778								

Complétez ce tableau dans le tableur.

- 4. Donnez l'équation Y = Ax + B de la droite d'ajustement de Y en x obtenue par la méthode des moindres carrés.
- 5. Déduisez-en que $y = f(x) = 10^{Ax+B} = K \cdot u^x$ où $K = 10^B$ et $u = 10^A$.
- 6. Quel est le sens de variation de $f \in D$ ressez son tableau de variation sur [0, 20].
- 7. Donnez les prévisions du nombre de cas pour les 7 jours suivants.
- 8. Si l'évolution de l'épidémie reste semblable, au bout de combien de temps le nombre de cas dépasserat-il 3000 ?

Partie C

Enfin les relevés arrivent : Léon respire, la maladie recule... mais son modèle n'est plus valable.

Rang du relevé x_i	1	2	3	4	5	6	7	8	9	10	11	12
Nombre de cas y_i	600	690	794	913	1045	1205	1380	1602	1815	2264	1923	1540

- 1. Quel ajustement vous semble maintenant le plus efficace parmi ceux proposés par le tableur ?
- 2. L'ajustement qui vous semble le plus facile à exploiter est un ajustement polynomial de degré 3. Déterminez la fonction $g(x) = ax^3 + bx^2 + cx + d$ d'ajustement à l'aide du tableur. On note C sa courbe.
- 3. Calculez la dérivée g' de g. A l'aide de votre calculatrice déterminez le signe de g' et les variations de g. Dressez son tableau de variations sur [0, 20].
- 4. Calculez les coefficients directeurs de la tangente à C aux points d'abscisses 5, 6, 7, 8, 9, 10. Interprétez les variations de ces coefficients directeurs dans le copmportement de l'épidémie.
- 5. Déterminez à l'aide de votre calculatrice le moment où l'épidémie se terminera.

1-n: Glycémie

Partie A

Soit f la fonction définie sur l'intervalle [0; 7] par : $f(t) = 0.6 \times (0.45)^t + 0.84$.

- 1. a. Justifier que la fonction f est décroissante.
- b. Dresser le tableau de variations de f.
- c. Recopier et compléter le tableau suivant (on arrondira les résultats à 10^{-2} près).

t	0	1	2	3	4	5	6	7
f(t)	1,44							

2. On appelle $\mathbb C$ la courbe représentant la fonction f dans un repère orthogonal du plan. $\mathbb C$ est représentée ci-dessous.

On appelle T la droite tangente à la courbe C au point d'abscisse 0.

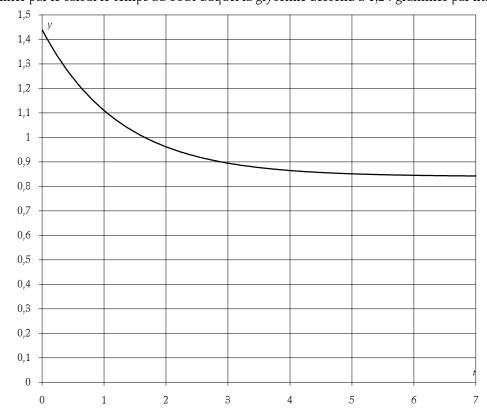
- a. La droite T peut-elle avoir l'équation y = -0.3x + 1.44 ?
- b. On admet que T passe par les points A(0; 1,44) et B(3,1;0). Donner une équation cartésienne de la droite T. Tracer T.

Partie B

On injecte du glucose à un patient par voie intraveineuse. On choisit comme instant t=0 celui où le glucose commence à être éliminé par l'organisme.

La fonction f de la partie A donne, à l'instant t exprimé en heures, la glycémie exprimée en grammes par litre de sang.

- 1. Compléter le graphique de la partie A en mettant la légende sur les axes.
- 2. Calculer la glycémie de ce patient au bout d'une heure et trente minutes (on arrondira le résultat à 10^{-2} près).
- 3. Determiner graphiquement:
- a. le temps au bout duquel la glycémie descend à 1,24 grammes par litre,
- b. le temps, mesuré depuis l'instant t = 0, au bout duquel la glycémie aura diminué de 0,5 gramme par litre (on arrondira chaque résultat à cinq minutes près et on fera apparaître les traits de construction utiles à ces lectures).
- 4. Déterminer par le calcul le temps au bout duquel la glycémie descend à 1,24 grammes par litre.



1-o: Glycémie 2

A. Étude d'une fonction

On considère la fonction f définie sur l'intervalle [0; 50] par $f(t) = 2 \times (0,982)^t$.

Le plan est muni d'un repère orthogonal. On note C la courbe de la fonction f dans ce repère. Prendre comme unités graphiques 1 cm pour 5 unités sur l'axe des abscisses et 5 cm pour une unité sur l'axe des ordonnées.

- 1. Dresser le tableau de variation de f sur l'intervalle [0, 50]. Justifier le sens de variation de f.
- 2. Résoudre par le calcul l'équation f(t) = 1,5. On donnera la valeur exacte de la solution, puis une valeur approchée arrondie à l'unité près.
- 3. a. Reproduire et compléter le tableau des valeurs suivant (dans lequel les valeurs approchées sont à arrondir à 10^{-2} près).

t	0	2	5	8	10	15	20	25	30	35	40	45	50
f(t)				1,73			1,39						0,81

b. Tracer la courbe C.

B. Application

Le taux de glycémie (de glucose dans le sang) doit rester stable. Cet équilibre est assuré par un processus appelé homéostasie. Quand un changement se produit, le cerveau le décèle et envoie des messages pour le corriger. À l'instant t, exprimé en minutes, le taux de glycémie, exprimé en g.l⁻¹, est donné par

$$f(t) = 2 \times (0.982)^t$$
.

On considère qu'un patient a un taux de glycémie normal lorsque celui-ci est inférieur à 1,1 g.l⁻¹ (sachant qu'il reste supérieur à 0,8 g.l⁻¹ sur l'intervalle [0; 50]).

En utilisant le graphique de la partie A, déterminer la durée nécessaire pour que le taux de glycémie devienne normal. On fera apparaître les traits de constructions utiles.

2. Probabilités

2-a: QCM probas-tableur

Cet exercice est un Questionnaire à Choix Multiple.

Pour chacune des questions, une seule des réponses proposées (a, b, c ou d) est correcte.

Partie A

Voici les résultats au baccalauréat pour un lycée.

	A	В	С	D	Е	F	G	Н
1		Candidats présents	Candidats reçus	Pourcentage	Mentions TB	Mentions B	Mentions AB	Total mentions
2	Enseignement général	138	117		6	21	28	
3	Série STG		92	83,6%		6	11	
4	Séries STI+STL		78	87,6%	3	9	28	
5	Séries SMS+hôtellerie	94	77	81,9%		1	12	
6	Total toutes séries	431	364	84,5%	9	37	79	125

1. Quelle est la valeur contenue dans la cellule D2 ?

a. 84,7% b. 84,8%

c. 0,84

d. 85%.

2. Quelle est la formule entrée en H2 et recopiée vers le bas pour obtenir le total des mentions ?

a. = somme(E2 : G2)

b. =somme(E\$2:G 2)c =E 2 + F 2 + G\$2

d. = somme (E1:G1)

3. Le nombre de candidats présentés en STG est:

a. 77 b. 110 c. 169 d. 199

Partie B

On tire au hasard le dossier d'un candidat présenté par le lycée. Tous les dossiers ont la même probabilité d'être choisis. On considère les événements suivants :

M: « le candidat a obtenu une mention ».

R : « le candidat est reçu ».

G : « le candidat est issu de l'enseignement général ».

1. La probabilité p(G) est à 10^{-3} près :

a. 0,320 b. 0,848 c. 0,271 d. 0,5

2. La probabilité p(R) est à 10^{-3} près :

a. 0,848 b. 0,84 c. 0,845 d. 0,86

3. La probabilité $p_R(M)$ est à 10^{-3} près :

a. 0,343 b. 0,290 c. 0,311 d. 0,3

4. La probabilité $p(G \cap M)$ est à 10^{-3} près :

a. 0,321 b. 0,128 c. 0,270 d. 0,5

2-b: Orientation

Dans l'ensemble de l'exercice, les résultats seront arrondis au centième.

La feuille de calcul ci-dessous présente la répartition pour la rentrée 2005 de l'orientation des élèves à l'issue de la classe de 3ème.

Source : Ministère de l'éducation nationale de l'enseignement supérieur et de la recherche.

Partie A

- 1. Quelle formule entrer en D3 pour compléter la colonne D en recopiant la formule vers le bas ?
- 2. Quelle formule entrer en E3 pour compléter la colonne E en recopiant la formule vers le bas &
- 3. Quelles valeurs numériques s'afficheront dans les cellules D10 et E10 $\stackrel{.}{\varsigma}$

	A	В	С	D	E
1	Formation suivie	Filles	Garçons	Part des filles en % dans la formation suivie	Part des filles en % dans l'ensemble des filles
2		Effectifs	Effectifs	%	%
3	Redoublement en 3 ^{ème}	24 463	25 010	49,45 %	6,62 %
4	2 ^{nde} générale et technologique	246 743	201 821		
5	BEP	79 871	103 376		
6	dont : BEP production	7 896	71 141		
7	BEP services	71 975	32 235		
8	CAP	17 831	20 500		
9	dont : CAP production	5 707	16 233		
10	CAP services	12 124	4 267		
11	Autres formations	750	1 682		
12	Total	369 658	352 389		

Partie B

On a repris en partie le tableau précédent mais en ajoutant une colonne TOTAL.

А	В С	D
---	-----	---

1	Formation suivie	Filles	Garçons	Total
2	Tormation survic	Effectifs	Effectifs	Total
3	Redoublement en 3 ^{ème}	24 463	25 010	49 473
4	2 ^{nde} générale et technologique	246 743	201 821	448 564
5	BEP	79 871	103 376	183 247
6	dont : BEP production	7 896	71 141	79 037
7	BEP services	71 975	32 235	104 210
8	CAP	17 831	20 500	38 331
9	dont : CAP production	5 707	16 233	21 940
10	CAP services	12 124	4 267	16 391
11	Autres formations	750	1 682	2 432
12	Total	369 658	352 389	722 047

On choisit un élève parmi l'ensemble des élèves, et on admet que ces choix sont équiprobables.

On considère les événements :

F: « l'élève est une fille »

C : « l'élève suit un CAP ».

- 1. Calculer la probabilité de l'événement C, notée p(C).
- 2. Traduire par une phrase l'événement $F \cap C$.

Calculer la probabilité de l'événement $F \cap C$, notée $p(F \cap C)$.

- 3. Exprimer par une phrase la probabilité $p_{C}(F)$.
- 4. Déduire des questions précédentes $p_{C}(F)$.
- 5. Quelle formule écrire dans la feuille de calcul donnée au début de l'énoncé pour calculer $p_{C}(F)$

2-c : Crèches

En France Métropolitaine, le nombre de places proposées dans une crèche, en 2005, étaient réparties comme l'indique le tableau suivant :

	Taille de 1 à 20 places	En nombre de 21 à 40 places	Places de 41 à 60 places	Plus de 61 places	Total
Crèches de quartier	16794	20993	28551	17634	83972
Crèches de personnel	1405	4098	3395	2810	11 708
Crèches parentales	2788	0	0	0	2788
Total	20987	25091	31 946	20444	98468

Source : l'accueil collectif et en crèches familiales des enfants de moins de 6 ans en 2005. Direction de la recherche, des études, de l'évaluation et des statistiques DREES.

1. Cette question est un vrai-faux concernant le tableau statistique ci-dessus.

Les crèches dont la taille est comprise entre 41 et 60 places représentent 29 % du total des crèches.	VRAI	FAUX
Les crèches de quartier dont la taille est comprise entre 21 et 40 places représentent 21,3 % du total des crèches.	VRAI	FAUX
Les crèches de personnel dont la taille est comprise entre 1 et 20 places représentent 12 % du total des crèches de personnel.	VRAI	FAUX

Parmi les crèches dont la taille est comprise entre 41 et 60 places les crèches de quartier représentent 29 % du total.

2. Les parents d'un enfant de huit mois, dont l'un des parents travaille à l'hôpital, ont le choix pour garder cet enfant, entre la crèche et la halte-garderie de l'hôpital.

Le nombre de places étant limité, la probabilité qu'un enfant soit accepté en crèche est 0,4 et la probabilité qu'il le soit en halte-garderie est 0,6.

On sait de plus que :

• 30 % des enfants dont l'un des parents travaille à l'hôpital trouvent une place à la crèche de cet hôpital, les autres vont dans la crèche de leur quartier.

• 80 % des enfants dont l'un des parents travaille à l'hôpital trouvent une place dans la halte-garderie de cet hôpital, les autres vont dans la halte-garderie de leur quartier.

On précise que C, G, H et Q désignent les événements :

C « l'enfant est accueilli dans une crèche »

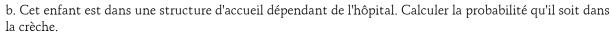
G « l'enfant est accueilli dans une halte-garderie »

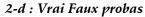
H « l'enfant est accueilli à l'hôpital »

Q « l'enfant est accueilli dans son quartier »

Compléter l'arbre pondéré ci-contre qui représente cette situation sachant que p(C) = 0.4 et p(H) = 0.6.

a. Calculer la probabilité que cet enfant soit dans une structure d'accueil dépendant de l'hôpital.





Cet exercice est un test vrai faux. Indiquer pour chaque phrase si elle est vraie ou fausse en entourant la réponse correspondante.

On lance un dé équilibré à six faces deux fois de suite.

La probabilité de l'événement "obtenir un six au premier lancer" est la même que celle de l'événement « obtenir un six au deuxième lancer ». Vrai Faux

La probabilité de l'événement "obtenir un double six" est $\frac{1}{36}$.

Vrai Faux

On considère les événements A « obtenir successivement deux nombres impairs » et B « obtenir successivement deux nombres pairs ». On a : $P(A \cup B) = P(A) + P(B)$ Vrai Faux

La probabilité de l'événement « obtenir un six au deuxième lancer sachant qu'on a obtenu un six au premier lancer » est $\frac{1}{6}$. Vrai Faux

La probabilité de l'événement « obtenir un double six » est plus petite que celle de l'événement « obtenir un trois au premier lancer puis un deux au deuxième lancer » Vrai Faux

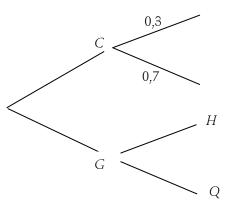
2-e: Test de dépistage

Dans une population donnée, la proportion de personnes atteintes d'une maladie est de 0,05 (c'est-à-dire que 5% des personnes sont atteintes de cette maladie).

On dispose d'un test de dépistage de cette maladie dont on veut tester la fiabilité.

On choisit une personne dans la population et on la soumet au test. On admet que chacun de ces choix est équiprobable.

On note G l'événement « la personne est atteinte de la maladie » et T l'événement « le test est positif ». Une étude a montré que :



* la probabilité $p_G(T)$ qu'une personne atteinte de cette maladie ait un test positif est de 0,98 ;

* la probabilité $p_{\overline{G}}(T)$ qu'une personne non atteinte de cette maladie ait un test positif est de 0,01 (on parle de faux positif).

 \overline{G} et \overline{T} désignent respectivement les événements contraires de G et T.

Partie A

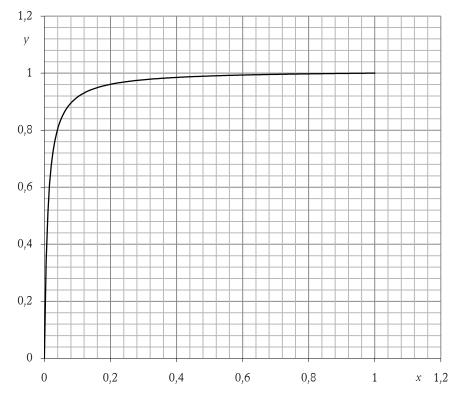
- 1. Compléter l'arbre de probabilité ci-contre.
- 2. Calculer la probabilité de T.
- 3. Déterminer $p_T(G)$.

Partie B

Dans cette partie on suppose que la proportion de personnes atteintes de la maladie est x, x étant un réel de l'intervalle [0;1].

On admet que l'on peut modéliser la probabilité $p_T(G)$ par la fonction f définie sur l'intervalle [0;1]

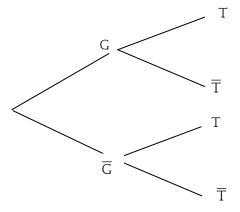
par : $f(x) = \frac{98x}{97x+1}$. On donne ci-dessous la courbe de la fonction f dans un repère orthogonal.



On considère que le test est fiable lorsque la probabilité qu'une personne ayant un test positif soit atteinte par la maladie est supérieure à 0,95.

Déterminer graphiquement puis par le calcul les réponses aux questions suivantes :

- 1. Le test est-il fiable si la proportion x de personnes atteintes par la maladie est de $0.05 \, \stackrel{?}{\varsigma}$
- 2. À partir de quelle proportion x le test est-il fiable ξ



2-f: Tableaux croisés, fréquences conditionnelles

Cette activité, pour la classe de terminale, sert à aborder ces nouvelles notions (tableaux croisés, fréquences conditionnelles). Elle est présentée ici avec l'utilisation d'Excel mais elle peut très bien se faire sans, en changeant quelques points de l'énoncé.

<u>Remarque:</u> Avec chacun des deux tableaux de fréquences conditionnelles, on peut construire deux histogrammes: les interprétations qui s'en déduisent seront différentes.

<u>Pré requis</u>: - Tableaux simples ;- Calcul de fréquences ;- Notions de base sur Excel.

Objectifs: - Lecture de tableaux croisés; - Savoir passer de la notation, par exemple $f_p(A)$, à sa traduction en français et réciproquement.

Nous allons nous intéresser dans cette activité à l'évolution des dépenses en médicaments des ménages français : nous comparerons cette évolution à celles de l'habillement et de l'alcool.

On considère le tableau croisé suivant (en millions d'euros) ; sources : INSEE, Leem.

	Médicaments (M)	Habillement (H)	Alcools (A)	Total
1970	1636	6382	1917	9935
(N1)	1030	0002	1717	7733
1980	5136	17761	5375	28272
(N2)	3130	1//01	3373	20272
1990	14654	36934	9997	61585
(N3)	valeur de M et N3	30734	7991	valeur totale de N3
2000	25069	38427	12912	76408
(N4)	20007	00 1 27	12/12	70400
2004	30279	37200	14300	81779
(N5)	30279	37200	14300	01//9
Total	76774	13670	44501	257979

Le but de cette activité est de trouver à partir de ce tableau, pas très simple à analyser, d'autres tableaux plus explicites ainsi que des graphiques.

A. Rappels sur les calculs de fréquences simples

- 1. Calculer la fréquence des dépenses en médicaments en 1970 par rapport aux dépenses totales (arrondir à 0,001 près).
- 2. Calculer la fréquence <u>en pourcentage</u> des dépenses en boissons alcoolisées en 1990 par rapport aux dépenses totales (arrondir à 0,1% près).

Ces résultats ne sont pas très faciles à exploiter! Nous allons donc introduire de nouvelles fréquences plus faciles à analyser.

B. Fréquences conditionnelles : calculs et notations

1. Considérons uniquement l'année 1990 : calculer la fréquence des dépenses en médicaments (M) par rapport aux dépenses totales de 1990 (N3), arrondir à 0,001 près.

Cette fréquence est appelée fréquence conditionnelle de M par rapport à N3 :

on la note :
$$f_{N3}(M) = \frac{\text{valeur de M et N3}}{\text{valeur totale de N3}}$$

- 2. Calculer la fréquence conditionnelle, notée $f_A(N5)$, des dépenses en boissons alcoolisées en 2004 par rapport aux dépenses totales en boissons alcoolisées (arrondir à 0,01 près), puis la donner en pourcentage.
- 3. Traduire par une phrase en français les fréquences conditionnelles suivantes :
- a. $f_{N2}(M)$.

- b. $f_{\rm H}({\rm N4})$.
- 4. Combien de fréquences conditionnelles peut-on calculer ?

Pour regrouper clairement tous ces résultats nous allons faire deux nouveaux tableaux.

C. Tableaux de fréquences conditionnelles et histogrammes

Tous les résultats seront donnés en pourcentage et arrondis à 0,1% près.

- 1. Reproduire sur le tableur le tableau principal de l'exercice.
- 2. Calculer le tableau donnant les fréquences conditionnelles en ligne.
- 3. Calculer le tableau donnant les fréquences conditionnelles en colonnes.
- 4. Faire un histogramme pour chacun des deux tableaux de fréquences conditionnelles.

D. Interprétation des données

- 1. Analyser l'évolution des dépenses en médicaments de 1970 à 2004, préciser le tableau ou le graphique utilisé, faire de même pour l'habillement et les boissons alcoolisées. Comparez ces évolutions.
- 2. Analyser le poids des dépenses en médicaments par rapport aux dépenses en boissons alcoolisées et en habillement, de 1970 à 2004, préciser le tableau ou le graphique utilisé.

2-g: Dopage?

Dans un campus universitaire, à l'issue d'une compétition d'athlétisme, 1250 athlètes subissent un test antidopage.

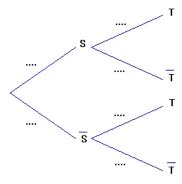
Le test n'est pas sûr à 100 % : certains athlètes peuvent être dopés et avoir cependant un test négatif, de même des athlètes sains peuvent avoir un test positif.

Le tableau ci-dessous donne la répartition des 1250 athlètes en fonction du résultat du test et de l'état réel de l'athlète :

	Test négatif	Test positif
Athlète sain	1188	12
Athlète dopé	1	49

Notations : si A et B sont deux événements, on notera : \overline{A} l'événement contraire de A, p(A) la probabilité de l'événement A, $p_B(A)$ la probabilité de A sachant B.

- 1. On choisit au hasard un athlète. Déterminer la probabilité des événements suivants :
 - S : « L'athlète est sain »
 - T : « Le test est positif »
 - $S \cap T$: « L'athlète est sain et le test est positif »
- 2. On choisit au hasard un athlète sain. Quelle est la probabilité qu'il ait un test positif 🕹
- 3. A l'aide des informations données dans le tableau, compléter l'arbre pondéré ci-dessous :



Les événements « Le test est positif » et « L'athlète est dopé » sont-ils indépendants ?

4. Pour chacune des quatre affirmations suivantes, dire si elle est vraie (V) ou fausse (F).

A chaque question est affecté un certain nombre de points. Pour chaque question, une réponse exacte rapporte le nombre de points affecté; une réponse inexacte enlève la moitié du nombre de points affecté. Le candidat peut

décider de ne pas répondre à certaines de ces questions. Ces questions ne rapportent aucun point et n'en enlèvent aucun. Si le total est négatif, la note est ramenée à 0.

Affirmation	V ou F
a. La probabilité qu'un athlète sain ait un test positif est 0,0096	
b. La probabilité que le test soit négatif sachant que l'athlète est dopé est 0,02	
c. Sachant que le test est positif, il y a 12 chances sur 49 que l'athlète soit sain.	
d. La probabilité que le test soit positif est $p_S(T) + p_{\overline{S}}(T)$.	

3. Statistiques

3-a: Taille de nouveaux nés

Présentation:

L'activité suivante, en classe de première, a pour objectifs :

Le calcul de paramètres d'une série statistique à l'aide d'un tableur et leur interprétation dans trois cas différents : les valeurs de la série ne sont pas pondérées ; les valeurs de la série sont pondérées ; la série est donnée en classes ;

La comparaison d'un même caractère sur deux populations ;

La réalisation d'un graphique à l'ordinateur.

Exercice 1 : les valeurs de la série ne sont pas pondérées.

Les tailles des 15 nouveaux nés dans une maternité une semaine donnée figurent dans la feuille de calcul ci-dessous.

	А	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р
1	Taille (en cm)	47	48	48,5	49	49	50	50	50	50,5	51	51,5	51,5	52	52,5	54
2																
3	Moyenne Ecart type															
4	Ecart type															
5																
6	Médiane															
7	1er quartile															
8	Médiane 1er quartile 3ème quartile Ecart interquartile															
9	Ecart interquartile															

Reproduire la feuille de calcul sur la feuille 1 d'un fichier du tableur.

1. Moyenne et écart type :

La moyenne s'obtient en entrant en B3 la formule « = MOYENNE (B1:P1) ».

L'écart type s'obtient en entrant en B4 la formule « = ECARTYPEP (B1:P1) ».

Attention, pour calculer les écarts types, on utilise la fonction ECARTYPEP.

2. Médiane et quartiles :

La médiane s'obtient en entrant en B6 la formule « = MEDIANE (B1:P1) ».

Utiliser la fonction QUARTILE pour calculer le premier quartile dans la cellule B7: entrer la formule = QUARTILE (B1:P1;1)».

Calculer de même en B8 le troisième quartile.

Quelle formule en B9 permet de calculer l'écart interquartile ?

3. Interprétation des résultats :

- a. Peut-on affirmer qu'au moins 75 % des nourrissons mesurent moins de 51,5 cm, sans nouveaux calculs ?
- b. Interpréter la taille médiane par une phrase.
- c. Comment peut-on expliquer que la taille moyenne est supérieure à la taille médiane ?

- d. Quelle est la valeur centrale qui a le plus de signification pour des parents s'ils veulent savoir où se situe leur bébé par rapport aux autres ?
- 4. Influence des valeurs extrêmes :
- a. Remplacer la plus petite valeur 47 par 45 et la plus grande 54 par 58. Que constate-t-on ξ
- b. La nouvelle série est-elle plus ou moins hétérogène que la série initiale ?
- 5. Comparaison de deux populations :

La semaine suivante naissent dans la même maternité 10 bébés dont la série statistique des tailles est donnée par le résumé ci-dessous :

Moyenne	50,1
Ecart type	1,53
Médiane	50,25
1er quartile	49
3ème quartile	51
Ecart interquartile	2

- a. Peut-on affirmer que la moyenne des tailles des 25 nouveaux nés au cours des deux semaines est 50.2cm ²
- b. Que signifie le fait que l'écart type est plus élevé la première semaine que la seconde semaine ?

Exercice 2 : les valeurs de la série sont pondérées.

En général, on ne peut plus utiliser les fonctions, telles que MOYENNE, MEDIANE, QUARTILE ..., prédéfinies par le tableur lorsque les données sont regroupées. Il faut alors organiser différemment les calculs.

La série suivante donne la taille en centimètres des 57 nouveaux nés de cette maternité un mois donné.

	Α	В	С	D	E
1	Taille (en cm) xi	Effectif ni	ni*xi	ni*xi²	Fréquences cumulées à 0,1% près
2	46	1			1,8%
3	46,5	0			
4	47	0			
5	47,5	2 3			
6	48	3			
7	48,5	5			
8	49	5			
9	49,5	7			
10	50	9			
11	50,5	8			
12	51	7			
13	51,5	5			
14	52	2			
15	52,5	2			
16	53	1			
17					
18	Moyenne				
	Variance				
20	Ecart type				

- 1. Reproduire cette feuille de calcul sur la feuille 2 du fichier précédent. Les cellules E2 à E16 sont au format *Pourcentage* avec une décimale.
- 2. Moyenne et écart type :
- a. Calculer l'effectif total en B17 en utilisant la fonction SOMME : « = SOMME (B2:B16) ».

- b. Calculer les produits $n_i x_i$ dans la colonne C puis leur somme dans la cellule C17.
- c. Quelle formule peut-on entrer en C2 puis recopier jusqu'en C16 ?
- d. Quelle formule peut-on entrer en C17 ?

On rappelle la formule de la moyenne
$$\bar{x} = \frac{\sum_{i} n_i x_i}{N}$$
.

- e. Quelle formule doit-on entrer en B18 pour calculer la moyenne ?
- f. Calculer les produits $n_i x_i^2$ dans la colonne D puis leur somme dans la cellule D17.

En utilisant la formule
$$V = \frac{\displaystyle\sum_i n_i x_i^2}{N} - \overline{x}^2$$
, calculer la variance de la série en B19.

Quelle formule peut-on entrer en B19 pour obtenir la variance &

g. A l'aide de la fonction RACINE, en déduire l'écart type en B20. Quelle formule peut-on entrer en B20 pour obtenir l'écart type ?

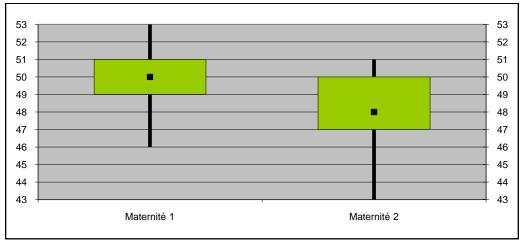
Compléter le tableau ci-dessus par les valeurs trouvées.

- 3. Médiane et quartiles :
- a. La cellule E2 contient la formule « =B2/B17 ». Quelle formule peut-on entrer en E3 puis recopier jusqu'en E16 $\stackrel{?}{\cdot}$

Compléter le tableau ci-dessus par les fréquences cumulées trouvées.

- b. Lire sur le tableau ci-dessus les valeurs du 1^{er} quartile, de la médiane et du 3^{ème} quartile.
- c. Construire le diagramme en boîte de la série, les « moustaches » correspondant aux valeurs extrêmes.
- 4. Comparaison de deux séries :

Le même mois, on a mesuré la taille des nourrissons d'une seconde maternité (maternité 2). Les diagrammes en boîte ci-dessous (les « moustaches » correspondant aux valeurs extrêmes) permettent de comparer les résultats.



Une seule des deux maternités possède un service pour les prématurés. Laquelle, selon vous, et pourquoi ?

Exercice 3 : la série est donnée en classes.

La série suivante donne la taille en centimètres de 537 nouveaux nés de cette maternité durant une année.

	Α	В	С	D	Е
1	Classes	effectif: ni	centre : xi	ni*xi	ni*xi^2
2	[45;46[5			
3	[46;47[8			
4	[47;48[31			
5	[48;49[61			
6	[49;50[117			
7	[50;51[134			
8	[51;52[84			
9	[52;53[52			
10	[53;54[25			
11	[54;55]	20			
12					
13	Moyenne				
14	Variance				
15	Ecart type				

1. Reproduire la feuille de calcul sur la feuille 3 du fichier précédent.

2. Moyenne et écart type :

Calculer le centre x_i de chaque classe dans la colonne C.

Calculer dans les colonnes D et E les produits $n_i x_i$ et $n_i x_i^2$.

En suivant la même démarche qu'à l'exercice II, calculer respectivement en B12, B13, B14 et B15 l'effectif total, la moyenne et l'écart type de la série.

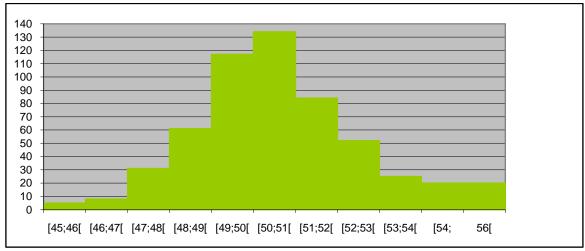
Compléter le tableau ci-dessus par les valeurs trouvées.

3. Histogramme:

a. Réaliser à l'ordinateur l'histogramme de la série en sélectionnant les cellules de B2 à B11 puis en cliquant sur l'Assistant graphique. Dans la boîte de dialogue Type de graphique, choisir Histogramme et cliquer sur Suivant. Dans Données Source, à la rubrique Etiquettes des abscisses (X), sortir sélectionner les cellules A2 à A11. Cliquer sur Terminer.

Cliquer avec le bouton droit sur un rectangle puis choisir Format de la série de données. Sous l'onglet Options, régler la Largeur de l'intervalle à 0.

b. On décide d'effectuer une correction en remplaçant la classe [54 ; 55] par la classe [54 ; 56] mais sans changer son effectif. L'histogramme suivant est-il correct ?



Si non, le corriger à la main.

3-b: Chiffres d'affaires

On étudie l'évolution des chiffres d'affaires de trois groupes pharmaceutiques : groupe A, groupe B et groupe C, donnée par la feuille de calcul suivante, extraite d'un tableur.

	Α	В	С	D	Е	F				
1	Chiffres d'affaires (exprimés en millions d'euros)									
2										
3	Années	2002	2003	2004	2005	2006				
4	Groupe A	120	126	133,5	138	147,2				
5	Groupe B	25	160	180	175	178,5				
6	Groupe C	80	=B6+5							
7										

- 1. a. Dans la cellule C6, on a entré la formule : = B6 + 5 puis on tape sur : *entrée*. Quelle valeur le tableur va-t-il alors afficher dans la cellule C6 ?
- b. À l'aide de la poignée de recopie de la cellule C6, on tire vers la droite et on étend la formule jusqu'à F6. Indiquer les valeurs que le tableur va inscrire dans les cellules D6, E6 et F6.
- c. Quelle est la nature de la suite formée par les cinq nombres situés successivement dans les cellules B6, C6, D6, E6 et F6 ?
- 3. On cherche dans cette question à calculer les indices des chiffres d'affaires du groupe A avec base 100 en 2002. On dispose pour cela de la feuille de calcul donnée ci-après :

	Α	В	С	D	Е	F						
1	Chiffres d'affa	Chiffres d'affaires (exprimés en millions d'euros)										
2												
3	Années	2002	2003	2004	2005	2006						
4	Groupe A	120	126	133,5	138	147,2						
5	Groupe B	25	160	180	175	178,5						
6	Groupe C	80										
7												
8	Indices base	100 en 2002										
9												
10	Années	2002	2003	2004	2005	2006						
11	Groupe A	100										
12												

- a. Calculer l'indice du chiffre d'affaires du groupe A en 2003, avec base 100 en 2002.
- b. Quelle formule doit-on taper en C11, utilisant la cellule B11, pour obtenir l'indice du chiffre d'affaires du groupe A en 2003, avec base 100 en 2002 ?
- c. Comment obtenir alors les indices pour les années 2004 à 2006 dans les cellules D11 à F11 &
- 4. On considère les deux séries statistiques résumées dans le tableau suivant, dans lequel on appelle x_i le rang de l'année (2000 + x_i), y_i le chiffre d'affaire du groupe A l'année de rang x_i et z_i celui du groupe B l'année de rang x_i :

Rang de l'année (x_i)	2	3	4	5	6
Chiffre d'affaires du groupe A (y_i)	120	126	133,5	138	147,2
Chiffre d'affaires du groupe B (z_i)	25	160	180	175	178,5

- a. Sur une feuille de papier millimétré, représenter dans un repère orthogonal en rouge le nuage de points correspondant au groupe A et *en vert* le nuage de points correspondant au *groupe B.* On prendra pour unités graphiques 2 cm en abscisse et 0,1 cm en ordonnée.
- b. Peut-on envisager un ajustement affine du nuage du groupe B ?
- c. À l'aide de la calculatrice, déterminer par la méthode des moindres carrés une équation de la droite de régression de y en x. Les coefficients seront arrondis au centième.
- d. Application : en supposant que le modèle obtenu à la question précédente est valide jusqu'en 2010, quel est le chiffre d'affaires estimé du groupe A pour 2008 ?

3-c: Consommation d'eau minérale

On se propose dans cet exercice, d'étudier l'évolution de la consommation d'eau minérale des français entre 1970 et 2000.

Partie A

La feuille de calcul suivante, extraite d'une feuille de calcul d'un tableur, donne la consommation moyenne d'eau minérale en litres (L) par Français sur une année (source : Comptes nationaux, base 1995, INSEE)

	А	В	С
1	Année	Consommation (en L) arrondie au dL	Taux d'évolution décennal exprimé en % arrondi à 0,01 %
2	1970	42,8	
3	1980	54,7	27,80
4	1990	92,4	68,92
5	2000	149,7	62,01

- 1. a. Que signifie le nombre 27,80 obtenu dans la case C3 et comment l'obtient-on &
- b. Quelle formule faut-il écrire dans la cellule C3 pour compléter la colonne C en recopiant cette cellule vers le bas ?
- 2. a. Calculer le taux d'évolution global, en pourcentage et arrondi à 1 %, de la consommation d'eau minérale entre les années 1970 et 2000.
- b. Déterminer par combien a été multipliée la consommation d'eau minérale entre 1970 et 2000.
- c. On admet que le taux d'évolution décennal exprimé en pourcentage, noté t, de la consommation d'eau minérale entre les années 1970 et 2000, est fixe.

Expliquer pourquoi $(1 + t)^3 = 3.5$. En déduire la valeur de t arrondi à 1 %.

d. On fait à présent l'hypothèse que la consommation d'eau minérale continue à évoluer en suivant le taux décennal de 52 % au delà de l'an 2000.

Quelle consommation, arrondie au décilitre, peut-on prévoir pour l'année 2010 ?

Partie B

Le tableau suivant donne l'évolution de cette consommation d'eau (en litre par personne) entre 1995 et 2004. On veut modéliser cette évolution en utilisant un ajustement affine de ce nuage de points.

Année	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Rang x_i de l'année	0	1	2	3	4	5	6	7	8	9
Consommation y_i (en litre par personne)	117	115	122	134	142	150	152	150	168	169

- 1. Tracer dans un repère orthogonal adapté le nuage de points correspondant.
- 2. Déterminer les coordonnées du point moyen G de cette série statistique et placer ce point sur le graphique.
- 3. On considère la droite (D) d'équation : y = 6.3 x + 113.5.
- a. Tracer cette droite (D) sur le graphique.
- b. La droite (D) semble-t-elle convenir pour un ajustement affine ?
- 4. On admettra qu'un modèle admissible pour estimer la consommation d'eau minérale par Français en 2010 peut être la fonction affine définie sur [0; 11] d'expression : f(x) = 6.3x + 113.5.
- a. À l'aide de ce modèle, calculer une estimation de la consommation d'eau minérale par français en 2010 (arrondie au litre).
- b. Retrouver graphiquement le résultat précédent.
- c. Le résultat obtenu dans cette partie B à la question 4.a. est différent de celui obtenu dans la partie A question 2.d. Quelles raisons peut-on invoquer ?

3-d: QCM statistiques

Cet exercice est un Questionnaire à Choix Multiple. Aucune justification n'est demandée.

Chaque réponse correcte rapportera x point. Pour chacune des questions, une seule des réponses proposées (a, b, c ou d) est correcte. La recopier sur la copie.

Le tableau suivant donne le type et la composition des ménages de France métropolitaine, par âge de la personne de référence, pour l'année 1999.

	15-19	20-24	25-29	30-39	40-49	50-59	60-74	75-79	Total
	ans	ans	ans	ans	ans	ans	ans	ans	Total
ménages d'une personne	71 342	568 482	698 099	991 935	819634	852355	1 657616	740 842	6 400 305
autres ménages sans familles	8 128	61 294	51 461	69570	70761	74374	68553	28272	432 413
familles monoparentales	1 842	30 571	95 875	446 307	626 546	325 646	235 307	66 195	1 828 289
familles avec un couple	6 095	185 403	931 168	2 998 003	3 245 556	2 676 745	2901 813	655 564	13 600 347
Total	87 407	845 750	1 776 603	4 505 815	4 762 497	3 929 120	4 863 289	1 490 873	22 261 354

Source : le recensement en France métropolitaine — mars 1999

Question 1.

- a. 1 842 familles composées d'un couple ont une personne de référence dont l'âge est compris entre 15ans et 19 ans.
- b. Parmi les familles dont la personne de référence a entre 75 ans et 79 ans, les plus nombreuses sont les familles monoparentales.
- c. Il y a moins de familles dont la personne de référence a entre 30 ans et 39 ans que de familles dont la personne de référence a entre 60 ans et 74 ans.
- d. Le nombre de familles dont la personne de référence a entre 25 ans et 39 ans est supérieur aux nombres de ménages d'une personne.

Question 2.

- a. Il y a environ 24% de familles avec un couple parmi les familles dont la personne de référence a entre 40 ans et 49 ans.
- b. Les familles monoparentales dont la personne de référence a entre 15 ans et 19 ans représentent environ 8% des familles.
- c. Les familles dont la personne de référence a entre 20 ans et 24 ans représentent environ 4% des familles.
- d. Parmi les ménages d'une personne, il y en a environ 25% dont la personne de référence a un âge compris entre 20 ans et 59 ans.

Question 3.

La moyenne d'âge de la personne de référence des familles monoparentales est d'environ :

a. 42 ans et demi

b. 44 ans et demi

c. 46 ans et demi

d. 48 ans

Question 4.

Le graphique ci-dessous représente les effectifs cumulés croissants par tranche d'âge de la personne de référence.

- a. L'âge médian des personnes de référence est 47 ans.
- b. Il y a moins de 10% des familles qui ont une personne référente âgée de plus de 75 ans.
- c. 25% des personnes référentes ont moins de 24 ans et demi.
- d. L'intervalle interquartile est [5 500 000; 16 500 000].

Question 5

Lors d'un sondage, effectué pendant l'année 1999, des opérateurs téléphoniques ont contacté, de façon aléatoire, des membres de ménages de France métropolitaine. A cette occasion, on peut affirmer que :

- a. La probabilité d'avoir contacté un membre d'un ménage d'une personne sachant que son âge est compris entre 30 ans et 39 ans est supérieur à 0,25.
- b. La probabilité d'avoir contacté un membre d'un ménage d'une personne qui a un âge compris entre 30 ans est supérieure à 0,25.
- c. Les événements « avoir contacté un membre d'un ménage d'une personne » et « avoir contacté un membre d'un ménage dont la personne de référence a un âge compris entre 30 ans et 39 ans » sont indépendants.
- d. La probabilité d'avoir contacté un membre d'un ménage d'une personne ou ayant un âge compris entre 30 ans et 39 ans est supérieure à 0,25.

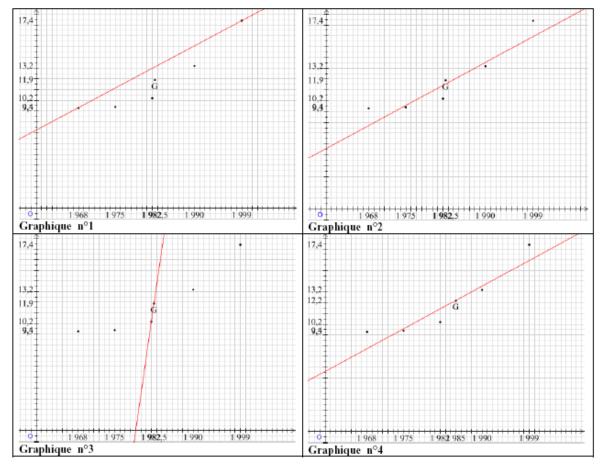
Question 6.

Dans ce même recensement on peut trouver le tableau suivant :

	1968	1975	1982	1990	1999
Nombre de familles					
familles monoparentales	719 700	776 260	887 040	1 175 444	1 493 700
couples avec enfants(s)	6 996 820	7 523 400	7 812 200	7 731 372	7 110 800
Ensemble	7 716 520	8 299 660	8 699 240	8 906 816	8 604 500
% de familles monoparentales	9,3	9,4	10,2	13,2	17,4

Source : le recensement en France métropolitaine – mars 1999

Dans chacun des graphiques ci-dessous, le nuage de points est celui représentant la variable *y* (pourcentage de familles monoparentales) en fonction de la variable *x* (année).



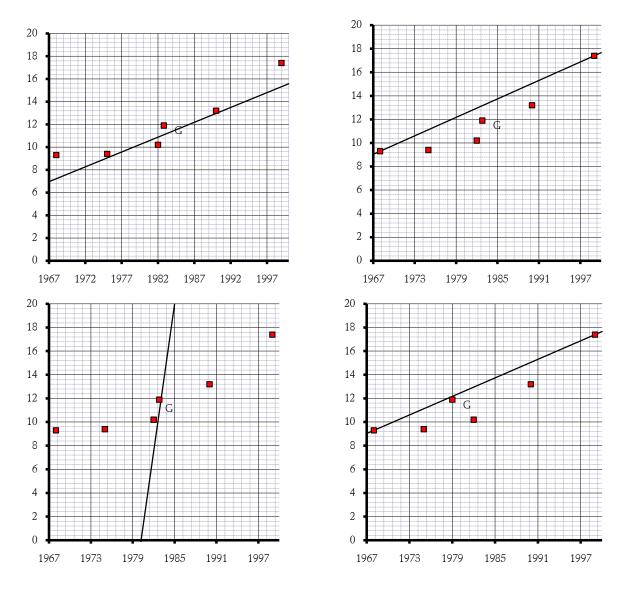
Parmi ces graphiques, celui dans lequel le point moyen G est correctement positionné et la droite d'ajustement, tracée en rouge, est acceptable est :

a. le graphique n°1

b. le graphique n°2

c. le graphique n°3

d. le graphique n°4.



3-e: Canicule et hôpitaux

Partie A

Durant les deux mois d'été 2003, lors de la canicule, on a enregistré de nombreuses arrivées aux urgences des hôpitaux et des cliniques.

L'état de certaines personnes a nécessité une hospitalisation ; pour d'autres, ce ne fut pas le cas.

Les informations relatives à une ville de 500 000 habitants ont été recensées et résumées dans une feuille de calcul d'un tableur.

On en donne un extrait ci-dessous:

	Α	В	С	D
1	tableau 1	hôpitaux	cliniques	total
2	nombre d'arrivées aux urgences avec hospitalisation	1430	950	
	nombre d'arrivées aux			
3	urgences sans hospitalisation			
4	total	2500		
5				
6	tableau 2	hôpitaux	cliniques	
7	pourcentage d'arrivées aux urgences avec hospitalisation		47,50%	
	pourcentage d'arrivées aux			
8	urgences sans hospitalisation			
9	total	100%	100%	
10				
11	tableau 3	hôpitaux	cliniques	total
12	pourcentage d'arrivées aux urgences avec hospitalisation			100%
13	pourcentage d'arrivées aux urgences sans hospitalisation		49,50%	100%

- 1. a. On peut lire que pour les cliniques, 950 personnes ont été hospitalisées représentant 47,5% des cas d'arrivées aux urgences dans ces cliniques. Calculer le nombre total des arrivées aux urgences dans les cliniques.
- b. Compléter le tableau 1.
- c. Quelle formule a-t-on inscrite dans la cellule D2 sachant qu'elle a été recopiée vers le bas jusqu'en D4 🖟
- 2. Dans le tableau 2, les cellules sont au format pourcentage. On souhaite obtenir les pourcentages par rapport au nombre d'arrivées aux urgences de chaque structure médicale.
- a. Calculer le pourcentage de personnes arrivées dans les hôpitaux mais qui n'ont pas été hospitalisées.
- b. Compléter le tableau 2.
- c. Quelle formule a-t-on inscrite dans la cellule B7 sachant qu'elle a été recopiée vers le bas jusqu'en B9 ?
- 3. On considère à présent le tableau 3.
- a. Dans la cellule C13, on lit 49,5% : en donner une interprétation.
- b. Quelle formule a-t-on inscrite dans la cellule B12 sachant qu'elle a été recopiée dans tout le tableau 3 ç

On s'intéresse aux 1430 hospitalisations dans les hôpitaux de la ville durant les neuf semaines des mois de Juillet et Août 2003.

Le tableau 4 ci-dessous indique le nombre de personnes hospitalisées suivant la semaine et le graphique représente le nuage de points correspondants.

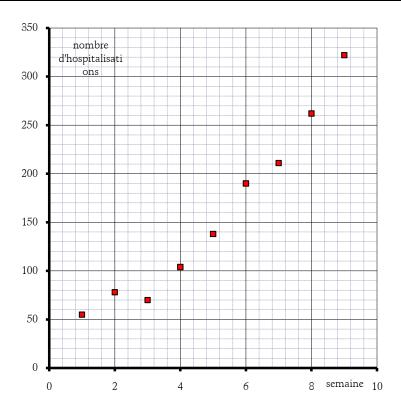
- 1. Calculer les coordonnées (arrondies à l'unité) du point moyen G de ce nuage, puis placer ce point sur le graphique.
- 2. On effectue un ajustement affine du nuage par la droite (D) passant par le point G et de coefficient directeur m = 33.

Déterminer une équation de la droite (D) puis construire cette droite sur le graphique.

3. En supposant que l'ajustement affine précédent soit encore applicable aux semaines du mois de septembre 2003, déterminer par le calcul le nombre d'hospitalisations que l'on pourrait prévoir lors de la deuxième semaine de ce mois. On vérifiera à l'aide du graphique le résultat trouvé en faisant apparaître les constructions.

Tableau 4

Semaine	1	2	3	4	5	6	7	8	9
Nombre d'hospitalisations	55	78	70	104	138	190	211	262	322



3-f: Il fait chaud (c)

Notre ami Gérard Trauchot vend des boissons rafraîchissantes. Il note ses ventes six jours de suite au cours desquels la température maximale est passée de 18°C à 30°C. Les résultats sont donnés dans le tableau suivant :

Jour	1	2	3	4	5	6
Température x_i (en °C)	18	20	22	26	28	30
Nombre y_i de boissons vendues	24	44	62	100	132	148

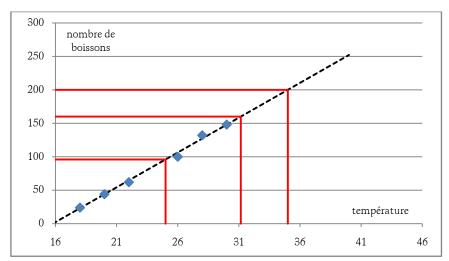
- 1. Représenter le nuage de points de coordonnées $(x_i; y_i)$; on graduera l'axe des abscisses à partir de 16 et on prendra pour unités graphiques : 1 cm en abscisse ; 1 cm pour 10 boissons vendues en ordonnées.
- 2. a. Un ajustement par une droite vous semble-t-il pertinent ? Justifier votre réponse.
- b. Montrer que la droite qui passe par le $2^{\text{ème}}$ et le $6^{\text{ème}}$ point du nuage a pour équation y = 10, 4x 164. Tracer cette droite.

On admettra que cette droite constitue un bon ajustement du nuage de points considéré.

- 3. Dans cette question, on fera apparaître les traits de construction permettant de répondre. Déterminer graphiquement, à l'aide de la droite d'ajustement précédente :
- a. combien Gérard vendrait de boissons si la température était de 25°C;
- b. à partir de quelle température il vendrait 200 boissons ;
- c. à partir de quelle température il vendrait au moins 160 boissons;
- d. l'augmentation du nombre de boissons vendues pour une élévation de 5°C de la température.
- 4. Retrouver le résultat de la question 3. c. par le calcul.

Correction

1.



2. a. Un ajustement affine semble pertinent puisque le nuage a une forme allongée et les points semblent alignés.

b. Le $2^{\text{ème}}$ point du nuage est A(20 ;44) et B le $6^{\text{ème}}$ point B(30 ; 148). Equation de la droite (AB) : y = ax + b.

$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{148 - 44}{30 - 20} = \frac{104}{10} = 10,4$$
, $y_A = 10,4x_A + b$ soit $44 = 10,4 \times 20 + b \Rightarrow b = -164$.

La droite d'ajustement a bien pour équation y = 10, 4x - 164

3. a. Si x = 25, on a y = 96.

b. Si y = 200, on a x = 35.

c. On a y > 160 pour x > 31,2.

d. Lorsque x augmente de 5 (quelque soit x), y augmente de $10,4 \times 5 = 52$ boissons!

4. Nous devons résoudre l'inéquation $10,4x-164 \ge 160$, soit $10,4x \ge 160+164 \Leftrightarrow x \ge \frac{324}{10.4} \approx 31,15$.

Gérard vendrait donc au moins 160 boissons si la température était au moins de 31,15°C.

4. Suites

4-a: Pourcentages et suite

A. Pourcentages

Le tableau ci-dessous donne le nombre de malades atteints d'une pathologie respiratoire en France.

	A	В	С	D	Е	F
1	Année	2002	2003	2004	2005	2006
2	Nombre de malades	51 382	53283	55702	58431	61353
3	Augmentation depuis 2000					

Source: INVS

- 1. Calculer le taux global d'augmentation du nombre de malades entre 2002 et 2006.
- 2. Déterminer le taux d'évolution annuel moyen sur ces 4 années.
- B. Utilisation d'une suite

On prévoit que le nombre de malades atteints de cette pathologie va continuer à augmenter de 6 % par an à partir de 2006. On désigne par U_n le nombre de malades l'année (2006 + n). On a U_0 = 61 353.

Dans ce qui suit, tous les résultats sont à arrondir à l'unité.

a. Déterminer la nature de la suite (U_n) . Justifier.

- b. Donner, pour tout entier naturel n, l'expression de U_n en fonction de n.
- c. Déterminer le nombre total de malades atteints de cette pathologie pour les six années de 2006 à 2011.

4-b : Dépense énergétique (c)

Lors d'une épreuve sportive les dépenses énergétiques sont en grande partie couvertes par le métabolisme anaérobie lactique ce qui provoque une augmentation de la concentration sanguine de lactate.

Le but de l'exercice est d'étudier la concentration du lactate (mesurée en $mmol.L^{-1}$) en fonction de la vitesse, chez un coureur international, lors d'essais d'effort.

1. On note v_0 la vitesse du coureur pour l'essai initial et plus généralement v_n la vitesse du coureur à l'essai n, où n est un entier compris entre 0 et 7.

La vitesse est augmentée de 2 km.h⁻¹ à chaque essai et on donne $v_0 = 12$ km.h⁻¹.

- a. Déterminer v_1 et v_2 .
- b. Donner, en justifiant la réponse, la nature de la suite étudiée. Préciser la raison.
- c. Exprimer v_n en fonction de n.
- 2. On note c_n la concentration en mmol.L⁻¹ du lactate dans le sang au $n^{\text{ième}}$ essai. On constate que $c_0 = 0.25 \text{ mmol.L}^{-1}$ et qu'à l'essai suivant la concentration de lactate dans le sang a augmenté de 78%.
- a. Quel est le coefficient multiplicateur qui permet de calculer la concentration c_1 de lactate présent dans le sang à l'essai 1 à partir de la concentration c_0 ?
- b. Calculer c_1 .
- 3. On constate que la concentration de lactate dans le sang continue d'augmenter de 78% à chaque essai.
- a. Déterminer la nature de la suite (c_n) et montrer que $c_n = 0.25 \times (1.78)^n$.
- b. Calculer c_7 (le résultat sera arrondi au centième).
- c. On estime que le seuil anaérobie est atteint lorsque le taux de lactate est supérieur à 4 mmol.L⁻¹. Déterminer le numéro de l'essai correspondant à ce seuil et en déduire la vitesse à partir de laquelle on peut considérer que le seuil est dépassé.
- 4. Le tableau ci-dessous, élaboré à l'aide d'un tableur, donne la vitesse et la concentration de lactate dans le sang à chaque essai.

	A	В	С	D
1	Essais	Vitesse v _n en km.h ⁻¹	Concentration c_n en mmol.L ⁻¹	Raison de v_n
2	0	10	0,25	
3	1			Raison de c_n
4	2			
5	3			
6	4			
7	5			
8	6			
9	7			

- a. Quelle formule peut-on saisir dans la cellule B3 de la colonne B avant de la recopier vers le bas pour calculer les vitesses v_1 à v_7 du coureur ξ
- b. Quelle formule peut-on saisir dans la cellule C3 de la colonne C avant de la recopier vers le bas pour calculer les concentrations de lactate dans le sang c_1 à c_7 ?
- 5. On entre maintenant les raisons des suites (v_n) et (c_n) dans les cellules D2 et D4 de la feuille de calcul.

- a. Quelle nouvelle formule peut-on alors saisir dans la cellule B3 de la colonne B avant de la recopier vers le bas pour calculer les vitesses v_1 à v_7 du coureur de façon à ce que la feuille de calcul se mette automatiquement à jour si l'on vient à modifier la valeur de la cellule D2 &
- b. Quelle nouvelle formule peut-on alors saisir dans la cellule C3 de la colonne C avant de la recopier vers le bas pour calculer les vitesses c_1 à c_7 du coureur de façon à ce que la feuille de calcul se mette automatiquement à jour si l'on vient à modifier la valeur de la cellule D4 ?

Correction

- 1. a. $v_1 = 14$, $v_2 = 16$.
- b. $v_{n+1} = v_n + 2$ car à chaque essai, la vitesse augmente de 2 km.h⁻¹ donc (v_n) est une suite arithmétique de raison 2 et de premier terme $v_0 = 12$.
- c. Comme (v_n) est une suite arithmétique de raison 2 et de premier terme $v_0 = 12$, alors $v_n = v_0 + nr = 12 + 2n$.
- 2. a. La concentration de lactate dans le sang ayant augmenté de 78 %, le coefficient multiplicateur est donc de $1 + \frac{78}{100} = 1,78$.
- b. On en déduit donc que $c_1 = 0,25 \times 1,78 = 0,445$.
- 3. a. $c_{n+1} = 1,78 \times c_n$ car à chaque essai, la concentration augmente de 78%. Donc (c_n) est une suite géométrique de raison 1,78 et de premier terme $c_0=0,25$. Ainsi, pour tout n, c $c_n=c_0\times q^n=0,25\times 1,78^n$.
- b. $c_7 = 0.25 \times (1.78)^7 \approx 14.15$.
- c. On doit déterminer n tel que $c_n > 4$, soit $0.25 \times (1.78)^n > 4$
- A la calculatrice on trouve n = 5. On en déduit alors la vitesse en calculant $v_5 = 12 + 2 \times 5 = 22$. Le seuil est donc dépassé lorsque la vitesse est de 22 km.h⁻¹.
- 4. a. On entre la formule suivante $= |B|2 + A3 \times 2$
- b. On entre la formule suivante $= C \times 1,78 \wedge A3$
- 5. a. On entre la formule suivante $= B 2 + A3 \times D2$
- b. On entre la formule suivante $= C \times D\$4 \land A3$

4-c: Pollution

Une usine rejette actuellement 5 000 kilogrammes de polluants par an dans l'eau. Suite aux accords de Kyoto en 2005, on a demandé à l'entreprise de ramener cette quantité à 3 000 kilogrammes par an en au plus 10 ans, et celle-ci s'y

Dans l'étang voisin, il y a 200 truites.

Si la quantité de rejets est supérieure à 3 000 kilogrammes par an, on perd globalement 15 truites par an.

Si cette quantité est inférieure à 3 000 kilogrammes par an, alors on a globalement 10 truites de plus par an.

On note u(n) la quantité de rejets polluants de l'usine au cours de l'année (2005 + n), u(0) = 5000.

On note v(n) le nombre total de truites dans l'étang au cours de l'année (2005 + n), v(0) = 200.

L'usine cherche à déterminer le taux d'évolution en pourcentage afin de diminuer sa quantité de rejets pour tenir

	А	В	С				
1	Lut	te contre la pollutio	ı				
2							
3							
4	Taux de	Taux de diminution en%					
5		rejets	truites				
6	Ν	u(n)	v(n)				
7	0	5000	200				
8	1	4800	185				
9	2	4608	170				
10	3	4423,68	155				
11	4	4246,73	140				
12	5	4076,86	125				
13	6	3913,79	110				
14	7	3757,24	95				
15	8		80				
16	9		65				
17	10		50				
18	11		35				
19	12		20				
20	13		30				
21	14		40				
22	15		50				
23	16	2602,01	60				
24	17	2497,93	70				
25	18	2398,02	80				
26	19	2302,10	90				
27	20	2210,01	100				
28	21	2121,61	110				
29	22	2036,75	120				
30	23	1955,28	130				
31	24	1877,07	140				
32	25	1801,98	150				
		feuille 1					

ces engagements. Pour cela, son comptable établit les tableaux suivants :

Partie 1 : feuille 1

- 1. Quelle est parmi les formules suivantes celle que l'on doit insérer dans la cellule B9 de la feuille 1 sachant que cette formule sera recopiée vers le bas ?
 - * = B8*(1-C5/100)
 - * =B8*(1-C5/100)
 - $^* = B 8*(1-C 5/100)$
- 2. Actualiser cette formule en B15.
- 3. Quelle formule a-t-on entrée en C8 pour que, recopiée vers le bas, elle donne les résultats voulus ?
- 4. Sans compléter le tableau et en expliquant la démarche utilisée, indiquer en quelle année la quantité de rejets polluants est devenue inférieure à 3 000 kilogrammes.

Avec ce taux de diminution, l'usine aura-t-elle réussi à respecter ses engagements &

Partie 2 : feuille 2

Dans cette partie, les résultats seront arrondis au centième.

On a construit la feuille 2 en modifiant seulement la donnée de la cellule C4 de la feuille1.

- 1. Calculer u(1), u(2) et u(3).
- 2. Expliquer pourquoi $u(n) = 0.95^n \times 5000$.
- 3. Utiliser un tableur pour compléter la colonne B de la cellule B14 à la cellule B18.

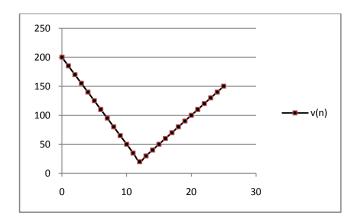
La diminution de 5% par an de la quantité de rejets polluants a-t-elle permis à l'usine de tenir ses engagements ?

4. Compléter la colonne C jusqu'à la fin. Indiquer la nature de la suite v(n) de 2005 à 2014 puis de 2015 à 2030.

En quelle année retrouvera-t-on dans l'étang voisin un nombre de truites supérieur ou égal à celui de 2005 ¢

Partie 3 : assistant graphique de la feuille 1

- 1. Retrouver le résultat de la question 4. de la Partie 2.
- 2. Si la perte des truites avait suivi la même tendance après 2014, en quelle année n'y aurait-il plus eu de truites dans l'étang ?



		А	В	C
	1	Lut	te contre la polluti	on
	2			
	3			
	4	Taux de dimi	nution en %	5
	5		rejets	truites
	6	n	u(n)	v(n)
	7	0	5000	200
	8	1	4750	185
	9	2		170
	10	3		155
	11	4		
	12	5		
	13	6		
	14	7		
	15	8		
	16	9		
	17	10		
	18	11		
	19	12		
	20	13		
	21	14		
	22	15		
	23	16		
	24	17		
	25	18		
	26	19		
	27	20		
	28	21		
_	29	22		
	30	23		
	31	24		
	32	25		
			.11 0	

4-d: Densité médicale en France

Le tableau ci-dessous, extrait d'une feuille automatisée de calcul, a été réalisé à partir d'une étude présentant une projection de la densité médicale en France à l'horizon 2020 (source : DREES).

La densité médicale, qui est ici le nombre de médecins pour 100 000 habitants, a été calculée à partir des données et projections de l'INSEE sur la population française.

Les effectifs des médecins et de la population française sont en milliers (arrondis au millier).

Les cellules des colonnes K et L sont au format pourcentage (arrondis à 0,1%).

	A		В	С	D	Е	F	G	Н	I	J	K	L
1					Eva	lué			Pro	jeté		Evolution	en %
	2			1985	1990	1995	2000	2005	2010	2015	2020	2000/ 1985	2020/ 2000
	France Métropolitaine	орошсать	Population en milliers d'habitants	55284	56577	57844	58796	60702	62302	63728	62450	6,4	6,2
	4 4 Viger	ance ivieu	Nombre de médecins en milliers	147	173	187	196	196	190	176	158	33,3	
•	5 出	LI LI	Densité médicale	266	306	323	333	323	305	276	253	25,2	-24
	6 Janie	ontaine +DOM	Population en milliers d'habitants	56654	58086	59375	60486	61 919	62 866			6,7	6,5
	France Métropolitaine +DON	ice ivierio	Nombre de médecins en milliers	149	176	190	199	200	193	179	161	33,5	-19
	Era	riai	Densité médicale	263	303	320	329	323	307	281	250		-24

<u>Partie A</u>

1. Parmi les formules suivantes, quelles sont celles que l'on peut choisir d'écrire dans la cellule C5 et qui, par recopie automatique dans les cellules D5 à J5 permettent d'obtenir les densités indiquées ?

$$=10^5*C4/C3$$
 $= 10^5*C3/C4$ $= 10^5*C3/C4$ $= 10^5*C3/C$ \$4

- 2. Quelle formule peut-on choisir d'écrire dans la cellule C6 et qui, par recopie automatique dans les cellules D6 à H6 permettent d'obtenir les effectifs indiqués ¿ Calculer les effectifs manquant dans les cellules I6 et J6.
- 3. Calculer les pourcentages manquants dans les cellules L4 et K8.

Partie B

Afin d'estimer la densité médicale chaque année entre 2005 et 2015 en France métropolitaine, on teste deux méthodes de calcul.

1. Première méthode

On note u_n la densité médicale l'année (2005 + n) et on suppose que (u_n) est une suite dont la variation absolue est constante.

- a. Montrer que (u_n) est une suite arithmétique de raison (-4,7).
- b. Exprimer u_n en fonction de n.
- c. Compléter le tableau ci-dessous (on arrondira à l'unité) :

Année	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
п	0	1	2	3	4	5	6	7	8	9	10
u_n	323	318						290			276

2. Deuxième méthode

On suppose que le pourcentage d'évolution de la densité médicale reste le même d'une année sur l'autre entre 2005 et 2015.

Soit k le coefficient multiplicatif associé à ce pourcentage et v_n la densité médicale l'année (2005 + n).

- a. Quelle est la nature de la suite (v_n) ?
- b. Démontrer que k vérifie l'égalité : $k^{10} = \frac{276}{323}$. Donner l'arrondi au dix-millième de k.
- c. Exprimer v_n en fonction de n. Donner les valeurs de v_n arrondies à l'unité, pour n compris entre 0 et 15.

4-e: Culture bactérienne

Dans un laboratoire de microbiologie, on prépare une culture bactérienne. Au début de l'expérience, c'est-à-dire à t=0 heure, cette culture contient 200 000 bactéries. Au bout d'une heure, on constate que le nombre de bactéries est passé à 800 000.

On pose $u_0 = 200\,000$ et on note u_n le nombre de bactéries au bout de n heures.

Partie A

On suppose que la croissance est exponentielle, c'est-à-dire que la suite (u_n) est géométrique.

- 1. Calculer la raison de cette suite.
- 2. Quel est le nombre de bactéries au bout de 6 heures ?
- 3. Au bout de combien d'heures le nombre de bactéries sera-t-il strictement supérieur à 2 000 000 ç

Partie B

L'extrait suivant d'une feuille de calcul permet de vérifier les résultats lorsque la suite (u_n) est géométrique.

	Α	В	С	D
1	Temps en heures	Nombre de bactéries	Test: 0 ou 1	
2	0	200000		
3	1			
4	2			
5	3			
6	4			
7	5			
8	6			

1. Parmi les trois formules suivantes, déterminer toutes celles que l'on peut écrire dans la cellule B3 et qui permettent de connaître par recopie vers le bas le nombre de bactéries :

a. =
$$B 2*4^A 3$$
 b. = $B 2*4^A 3$ c. = $B2*4$

2. La plage C2 à C8 permet de déterminer si le nombre de bactéries est strictement supérieur à 2 000 000. On utilise un test logique : si le contenu de la cellule Bi est strictement supérieur à 2 000 000, la cellule Ci doit contenir le chiffre 1, dans le cas contraire la cellule Ci contient le chiffre 0 (i représente le numéro de ligne).

Exemple : le nombre de la cellule B2 est inférieur à 2 000 000, la valeur affichée en C2 est donc 0.

Parmi les deux formules suivantes, déterminer celle que l'on doit entrer dans la cellule C2 et qui permet, par recopie vers le bas, de réaliser ce test.

a.
$$=SI(B2>2000000;1;0)$$

b.
$$=SI(B2>2000000;0;1)$$

- 3. On entre dans la cellule D1 la formule suivante : =NB.SI(B2:B8;">2000000").
- a. Expliquer le rôle de ce test appliqué à cet exercice.
- b. Quel est le résultat obtenu en D1 ?

La fonction SI

Sa syntaxe est : = SI(test logique ; valeur si vrai ; valeur si faux)

La fonction NB.SI

Sa syntaxe est : =NB.SI(plage ; critère). Elle donne le nombre de cellules qui, dans la plage indiquée, satisfont au critère spécifié. Remarquez les guillemets encadrant le critère.

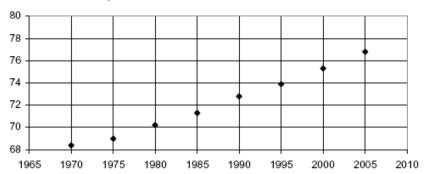
Partie C

Refaire l'exercice en prenant une suite arithmétique pour u_n au lieu d'une suite géométrique.

4-f: Espérance de vie d'un homme né en France

Cet exercice a pour objectif l'étude de l'espérance de vie à la naissance des personnes nées en France à partir de l'année 1970.

Le graphique ci-dessous donne l'espérance de vie à la naissance d'un homme né en France (source INSEE).



1. On décide de modéliser l'évolution, tous les cinq ans à partir de 1970, de l'espérance de vie à la naissance d'un homme né en France à l'aide d'une suite arithmétique.

On choisit une suite arithmétique de raison 1,2 et de premier terme $u_0 = 68,4$.

Ainsi, u_0 est l'espérance de vie à la naissance d'un homme né en France en 1970 et u_n l'espérance de vie à la naissance d'un homme né en France en l'année (1970 + 5n).

- a. Calculer u_1 et u_2 .
- b. Exprimer u_{n+1} en fonction de u_n .
- c. Exprimer u_n en fonction de n et de u_0 .
- d. On admet que le modèle reste valable jusqu'en 2010.

Quelle sera l'espérance de vie à la naissance d'un homme né en France en 2010 &

2. On considère l'extrait de feuille de calcul donnée ci-dessous, dans laquelle doivent apparaître les termes de la suite (u_n) .

	A	В	С	D
1	Année	п	u_n	Raison

2	1970	0	68,4	1,2
3	1975	1	69,6	
4	1980	2		
5	1985	3		
6	1990	4		
7	1995	5		
8	2000	6		
9	2005	7		
10	2010	8		

- a. Compléter la plage de cellules C4 à C10.
- b. Quelle formule entrer dans la cellule C3 afin d'obtenir les termes de la suite (u_n) sur la plage de cellules C4 à C10 par recopie vers le bas ξ
- 3. Le tableau ci-dessous donne l'espérance de vie à la naissance d'une femme née en France entre 1970 et 2005 (Source INSEE).

Année	1970	1975	1980	1985	1990	1995	2000	2005
Rang n	0	1	2	3	4	5	6	7
Espérance de vie (années)	75,9	76,9	78,4	79,4	81,0	81,9	82,7	83,8

- a. Tracer sur le graphique donné à la question 1. le nuage de points donnant l'espérance de vie à la naissance d'une femme née en France. On appelle G le point moyen de ce nuage.
- b. Calculer les coordonnées du point G.
- c. Placer le point G sur le graphique donné à la question 1.
- 4. On décide d'ajuster le nuage de points donnant l'espérance de vie à la naissance d'une femme née en France à l'aide de la droite d'équation : y = 1,15 n + 76.

Tracer cette droite sur le graphique donné à la question 1.

5. Commenter l'écart d'espérance de vie à la naissance entre les hommes et les femmes nés en France.