Terminale S juin 2011

Concours Sciences-Po Paris

Calculatrice autorisée ; durée 4 heures.

Problème

Le problème suivant est constitué de deux parties indépendantes entre elles. Dans chaque partie on étudie un exemple classique de loi de probabilité continue à densité.

Dans tout le problème le plan est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$.

Première partie

Soit λ un nombre réel non nul.

On considère la fonction $f_{\lambda}: x \mapsto e^{-\lambda x}$ définie sur \mathbb{R} . Sa courbe représentative dans le repère $(O; \vec{i}, \vec{j})$ est notée (C_{λ}) .

- A. 1. Étudier les variations de la fonction f_{λ} selon le signe de λ .
- 2. Déterminer l'équation réduite de la tangente $T_{\lambda,a}$ à la courbe (C_{λ}) au point A d'abscisse a où a est un réel quelconque.
- 3. a. À l'aide de la calculatrice, conjecturer, selon le signe de λ , la position de la courbe (C_{λ}) par rapport à la tangente $T_{\lambda,a}$ au point A.
- b. Donner l'allure de la courbe (C_{λ}) selon le signe de λ .
- B. 1. Pour tout réel $\alpha > 0$, on note $\mathcal{A}_{\lambda}(\alpha)$ l'aire sous la courbe (C_{λ}) sur l'intervalle $[0; \alpha]$, exprimée en unités d'aire.
- a. Déterminer la valeur de $A_{\lambda}(\alpha)$.
- b. Déterminer, si elle existe, la limite de $A_{\lambda}(\alpha)$ lorsque α tend vers $+\infty$.
- 2. a. Justifier l'existence des écritures $I(\alpha) = \int_{0}^{\alpha} t f_{\lambda}(t) dt$ et $J(\alpha) = \int_{0}^{\alpha} t^{2} f_{\lambda}(t) dt$.
- b. Calculer la valeur de chacune de ces deux intégrales.
- c. En déduire leurs limites respectives lorsque α tend vers $+\infty$, si elles existent.
- C. On dit qu'une fonction f définie sur $[0; +\infty[$ est une densité de probabilité sur $[0; +\infty[$ si :
 - pour tout réel x de $[0; +\infty[$, $f(x) \ge 0$;
 - la fonction f est continue sur $[0; +\infty[$;
 - la limite $\lim_{x \to +\infty} \int_0^x f(t) dt$ existe et est égale à 1.

On définit alors une loi de probabilité \mathbb{P} sur $[0; +\infty[$ de densité f: pour tout intervalle [a;b] inclus dans $[0; +\infty[$, la probabilité de l'intervalle [a;b] est $\mathbb{P}([a;b]) = \int_{-a}^{b} f(t) dt$.

Une variable aléatoire X à valeurs dans $[0; +\infty[$ suit la loi \mathbb{P} si, pour tout intervalle [a;b], inclus dans $[0; +\infty[, \mathbb{P}(a \le X \le b) = \int_{a}^{b} f(t) dt.$

Terminale S / ES http://laroche.lycee.free.fr Sciences Po / Paris juin 2011

Dans la suite de cette partie C., λ est un réel strictement positif et on considère la fonction $\varphi_{\lambda}: x \mapsto \lambda e^{-\lambda x}$ définie sur $[0; +\infty[$.

- 1. a. Déduire de ce qui précède que $\, \varphi_{\lambda} \,$ est une densité de probabilité sur $\, \big[\, 0 \, ; + \infty \big[\, . \,$
- b. Soit X_{λ} une variable aléatoire qui suit la loi de probabilité de densité φ_{λ} . Reconnaître la loi suivie par X_{λ} .
- 2. a. On appelle espérance de X_{λ} le réel noté $\mathbb{E}(X_{\lambda})$ défini par $\mathbb{E}(X_{\lambda}) = \lim_{x \to +\infty} \int_{0}^{x} t \varphi_{\lambda}(t) dt$.

Justifier l'existence de la limite précédente et donner une expression simple de $\mathbb{E}(X_{\lambda})$ en fonction de λ .

- b. Le temps d'attente en minutes à un standard téléphonique est une variable aléatoire Y_{λ} qui suit une loi exponentielle de paramètre λ . L'espérance $\mathbb{E}(Y_{\lambda})$ représente alors le temps moyen d'attente à ce standard. Sachant que ce temps moyen est de 5 minutes, déterminer la probabilité d'attendre encore 5 minutes, sachant qu'on a déjà attendu 2 minutes.
- 3. On appelle variance de X_{λ} le réel noté $\mathbb{V}(X_{\lambda})$ défini par $\mathbb{V}(X_{\lambda}) = \lim_{x \to +\infty} \int_{0}^{x} t^{2} \varphi_{\lambda}(t) dt \left[\mathbb{E}(X_{\lambda})\right]^{2}$.

Justifier l'existence de la limite précédente et déterminer une expression simple de $\mathbb{V}(X_{\lambda})$ en fonction de λ .

Deuxième partie

Soit λ un nombre réel non nul arbitrairement fixé.

On considère la fonction $g_{\lambda}: x \mapsto e^{-\lambda x^2}$ définie sur \mathbb{R} . Sa courbe représentative dans le repère $(O; \vec{i}, \vec{j})$ est notée (Γ_{λ}) .

- A. Dans cette partie A. plusieurs cas pourront être envisagé selon les valeurs du réel λ .
- 1. Faire une étude de la fonction g_{λ} : parité, limites, variations.
- 2. a. Déterminer la dérivée seconde de la fonction g_{λ} .
- b. On admet que la courbe représentative d'une fonction f deux fois dérivable traverse sa tangente en un point A d'abscisse a si et seulement si la dérivée seconde de f s'annule en a en changeant de signe.

La courbe (Γ_{λ}) présente-t-elle des points où elle traverse sa tangente ξ

- c. Donner l'allure de la courbe (Γ_{λ}) .
- B. On considère les fonctions $F_{\lambda}: x \mapsto \int_{0}^{x} e^{-\lambda t^{2}} dt$ et $F_{1}: x \mapsto \int_{0}^{x} e^{-t^{2}} dt$ définies sur \mathbb{R} .
- 1. a. Rappeler l'argument permettant de justifier la dérivabilité de la fonction F_{λ} puis donner l'expression de $F'_{\lambda}(x)$ pour tout réel x.
- b. En déduire que, pour tout réel x, on a l'égalité : $F_{\lambda}(x) = \frac{1}{\sqrt{\lambda}} F_{1}(x\sqrt{\lambda})$.
- 2. Justifier que la fonction F_{λ} est impaire.
- 3. Étudier les variations de la fonction F_{λ} .

Dans la suite de cette deuxième partie, on se place dans le cas où λ est strictement positif.

4. a. Montrer que, pour tout t réel supérieur ou égal à $\frac{1}{\lambda}$, $g_{\lambda}(t) \le e^{-t}$.

b. Montrer que, pour tout x réel supérieur ou égal à $\frac{1}{\lambda}$, $F_{\lambda}(x) - F_{\lambda}(\frac{1}{\lambda}) \le \int_{\frac{1}{\lambda}}^{x} e^{-t} dt$.

En déduire que, pour tout x réel supérieur ou égal à $\frac{1}{\lambda}$, $F_{\lambda}(x) \le F_{\lambda}(\frac{1}{\lambda}) + e^{-\frac{1}{\lambda}}$.

Pour tout entier naturel n non nul, on pose $u_n = F_{\lambda}(n)$.

c. Prouver que la suite $(u_n)_{n>0}$ a une limite finie en $+\infty$ que l'on note L_{λ} .

On admet que la fonction F_{λ} admet également pour limite L_{λ} lorsque x tend vers $+\infty$.

d. Quelle relation existe-t-il entre L_{λ} et L_{1} ?

e. Montrer que
$$0 \le L_{\lambda} - F_{\lambda} \left(\frac{1}{\lambda}\right) \le e^{-\frac{1}{\lambda}}$$
.

f. On suppose dans cette question que $\lambda = \frac{1}{2}$. Donner une valeur approchée de $L_{1/2}$ à e^{-2} près.

g. On admet que $L_{1/2} = \sqrt{\frac{\pi}{2}}$. Déterminer la valeur exacte de L_{λ} .

C. On dit qu'une fonction f définie sur $\mathbb R$ est une densité de probabilité sur $\mathbb R$ si :

- pour tout réel x, $f(x) \ge 0$;
- la fonction f est continue sur \mathbb{R} ;

- les limites $\lim_{x\to-\infty}\int_{x}^{0}f(t)dt$ et $\lim_{x\to+\infty}\int_{0}^{x}f(t)dt$ existent et sont finies ; leur somme est égale à 1.

On définit alors une loi de probabilité $\mathbb P$ sur $\mathbb R$ de densité f: pour tout réel a, la probabilité de l'intervalle

$$]-\infty; a]$$
 est $\mathbb{P}(]-\infty; a]$ = $\lim_{x\to\infty}\int_{x}^{a}f(t)dt$.

Une variable aléatoire X à valeurs dans $\mathbb R$ suit la loi $\mathbb P$ si, pour tout réel a, $\mathbb P(X \le a) = \lim_{x \to -\infty} \int_x^a f(t) dt$.

Soit la fonction $\psi: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ définie sur \mathbb{R} .

- 1. a. Préciser la parité de la fonction ψ .
- b. Déduire de la partie B. que la fonction ψ est une densité de probabilité sur \mathbb{R} .

Soit X une variable aléatoire qui suit la densité de probabilité ψ (la loi suivie par X est appelée *loi normale centrée réduite* et est très utilisée en statistiques et probabilités).

2. On appelle espérance de X le réel $\mathbb{E}(X)$ défini par : $\mathbb{E}(X) = \lim_{x \to -\infty} \int_{x}^{0} t \psi(t) dt + \lim_{x \to +\infty} \int_{0}^{x} t \psi(t) dt$.

Justifier l'existence des limites précédentes et calculer $\mathbb{E}(X)$.

3. a. En s'aidant de la partie B., justifier que pour tout réel a supérieur à 2, la probabilité $\mathbb{P}(2 \le X \le a)$ est majorée par $\frac{1}{\sqrt{2\pi}}e^{-2}$.

b. En déduire que $\frac{1}{2} - \frac{1}{\sqrt{2\pi}} \le \mathbb{P}\left(0 \le X \le 2\right) \le \frac{1}{2}$ puis déterminer un encadrement de la probabilité $\mathbb{P}(X < 2)$.

D. Lors de l'étude de la loi normale centrée réduite, il est utile de s'intéresser aux limites de la forme $\lim_{x\to +\infty} \int_0^x t^n \psi(t) dt$ où n est un entier naturel.

Pour tout entier naturel n, on considère la fonction $\chi_n : x \mapsto x^n e^{-\frac{x^2}{2}}$ définie sur $[0; +\infty[$.

Pour tout réel x positif, on pose alors $b_n(x) = \int_0^x \chi_n(t) dt$.

- 1. Calculer $b_1(x)$.
- 2. a. Montrer que, pour tout entier naturel n supérieur ou égal à 2 et pour tout réel x positif, $b_n(x) = -x^{n-1}e^{-\frac{x^2}{2}} + (n-1)b_{n-2}(x)$.

b. En déduire que, pour tout entier naturel n supérieur ou égal à 2, $b_n(x)$ a une limite finie quand x tend vers $+\infty$, notée B_n .

- c. Montrer que, pour tout entier naturel n supérieur ou égal à 2, $B_n = (n-1)B_{n-2}$.
- d. Donner les valeurs de B_1 , B_2 , B_3 et B_4 .
- 3. a. Montrer que, pour tout entier naturel k, on a $B_{2k+1}=2^k k!$ et $B_{2k}=\frac{(2k)!}{2^{k+1}k!}\sqrt{2\pi}$.
- b. En déduire la valeur de $\lim_{x\to+\infty}\int_0^x t^n \psi(t)dt$ en fonction de n.

FIN