
Exercice 1:

- **A.** 2. Puisque les points sont presque alignés, cela fait penser à une croissance linéaire.
- **B.** 1. a. $v_1 = v_0 + 1.4 = 8.3$ et $v_2 = v_1 + 1.4 = 9.7$.
- **B.** 1. b. Pour passer d'un terme au suivant on ajoute toujours le même nombre 1,4 donc la suite (v_n) est arithmétique de raison 1,4.
- **B.** 2. On peut inscrire la formule = D3 + 1.4.
- **B.** 3. Il s'agit d'abord de repérer quelle est la durée n correspondant à 7h. Deux possibilités : être patient sachant qu'à 15h, n=0, à 16h n=1, ...ou bien voir que 7h le lendemain correspond à 24+7=31h soit à 15+16h ce qui donne une durée de n=16h. Puisque (v_n) est arithmétique, $v_n=v_0+n\times r$ donc $v_{16}=v_0+16\times r=6,9+16\times 1,4=29,3$. Soit 29,3 milliers de bactéries.

C. 1. a.
$$w_1 = 6.9 \times 1,136^1 \approx 7.8$$
 et $w_2 = 6.9 \times 1,136^2 \approx 8.9$.

- C. b. La suite (w_n) est géométrique car pour passer d'un terme au suivant, on multiplie toujours par le même nombre (en effet, $w_{n+1} = 6.9 \times 1.136^{n+1} = 6.9 \times 1.136^n \times 1.136 = w_n \times 1.136$).
- C. 2. Les deux formules sont la b. et la d.

C. 3.
$$w_{16} = 6.9 \times 1.136^{16} \approx 53.1$$
.

C. 4. L'écart absolu est $w_{16} - u_{16} \approx 2.1$ et l'écart relatif est le pourcentage d'évolution entre u_{16} et w_{16} , or $\frac{w_{16} - u_{16}}{u_{16}} \approx 0.041$ donc un écart relatif d'environ 4,1%.

Exercice 2:

- **A.** 2. a. Parmi les 800 utilisateurs d'internet, 163 sont dans la tranche d'âge [30 ;40[soit un pourcentage d'environ 20% puisque $\frac{163}{800} \times 100 \approx 20$.
- **A.** b. Parmi les 132 utilisateurs d'internet qui téléchargent entre 0 et 2 Go, 30+42=72 ont plus de 40 ans soit un pourcentage d'environ 55% puisque $\frac{72}{132} \times 100 \approx 55$.

Volume en Go Tranche d'âge		[2;4[[4;6[[6;8[Total
[10; 20[21	51	80	125	277
[20; 30[17	40	59	107	223
[30;40[22	44	50	47	163
[40;50[30	20	20	12	82
[50;60[42	3	2	8	55
Total	132	158	211	299	800

- **B.** 1. 277+223=500 utilisateurs ont moins de 30 ans. Valeur qui dépasse la moitié de l'effectif total donc l'âge médian m est inférieur à 30 ans. Mais $m \ge 20$ ans puisque seulement 277 ont moins de 20 ans.
- **B.** 2. L'effectif total est N=223 qui est impair donc la médiane est le terme de rang (N+1)/2, c'est-à-dire le terme de rang 112. Or il y a 25+26+30+22=103 termes inférieurs ou égaux à 23 ans et 103+34=137 termes inférieurs ou égaux à 24 ans. Le 112° terme est donc m=24 ans.
- **B.** 3. La proposition a est vraie car l'écart interquartile de la série entre 0 et 2 Go est $Q_3 Q_1 = 55 27 = 28$ ans qui est plus du double de celui de l'autre série qui n'est que de 25 13 = 12 ans.

La proposition b est vraie car $Q_1 = 27$ ans donc au moins 75% ont déjà plus de 27 ans.

La proposition c est fausse car la médiane est 22 ans donc déjà 50% ont moins de 22 ans.