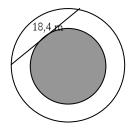

EXERCICES OUVERTS

Travail à faire...

- 1. Faire une analyse *a priori* de deux des exercices : concepts mobilisés, compétences nécessaires, difficultés prévues, erreurs prévues, niveau, temps, etc.
- 2. Peut-on envisager de proposer cet exercice sous forme de problème ouvert à des élèves ? Quels seraient alors les objectifs visés ?
- 3. Mettre en évidence les éléments à valoriser dans la notation d'une copie.

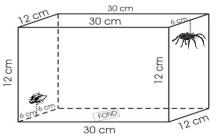
1. Problème de l'équerre :

Une équerre ABC est placée de telle sorte que le point A est situé sur l'axe des ordonnées et le point B sur celui des abscisses. On déplace l'équerre en faisant glisser A et B sur les axes. Comment se déplace le point C ?



2. La bibliothèque:

La bibliothèque d'une ville est un bâtiment moderne : les livres sont dans un cylindre central et ils sont accessibles par un couloir circulaire.


Elle mesure la plus grande distance possible dans le couloir, c'est-à-dire une corde du grand cercle extérieur, tangente au cercle interne qui contient les livres. Elle trouve 18,4 mètres.

Aide Sophie qui y vient souvent à trouver l'aire du couloir.

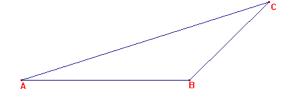
3. La boîte, l'araignée et la mouche

L'araignée est à 1 cm du haut en partant du milieu de l'arête, au point A. La mouche, paralysée de peur, est à 1 cm du fond de la boîte, au point M. Quelle est la longueur du chemin le plus court pour aller de A à M & (L'araignée ne vole pas! Elle se déplace uniquement sur les parois de la boîte.)

4. Produits

Ecrire dans ce tableau tous les nombres entiers de 1 à 9 de telle sorte que les produits des lignes et des colonnes soient égaux aux nombres indiqués.

Une suite possible

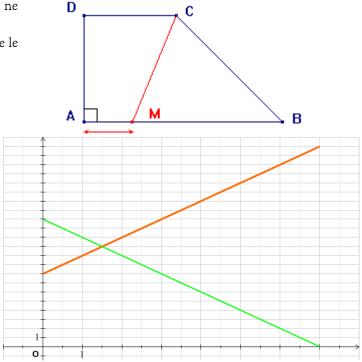

Dans la grille précédente, le plus grand produit valait 216.

On s'intéresse à la valeur minimale de ce plus grand produit. Quel est-il? Fournir une grille dans laquelle ce minimum intervient.

			40
			42
			216
28	90	144	

5. Périmètre

Comment construire un triangle ABE de base AB donnée, de même aire que le triangle ABC ci-contre mais de périmètre minimum ?


ABCD est un trapèze rectangle dont on ne connaît pas les dimensions.

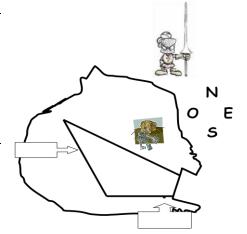
A tout point M du segment [AB], on associe le nombre réel x = AM.

On considère les nombres réels :

- f(x) égal à l'aire du triangle MCB
- g(x) égal à l'aire du quadrilatère AMCD.

Sur le graphique ci-contre, on a tracé les courbes représentatives des fonctions f et g ainsi définies. En vous aidant du graphique, retrouvez les dimensions du trapèze ABCD.

7. Donjon

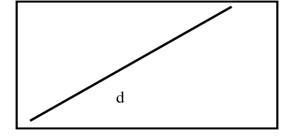

Le Chevalier ATTIGNYEN LE ROUGE a hérité d'un vieux donjon triangulaire dont l'entrée se trouve précisément au milieu du mur SUD. Il a caché son trésor exactement au milieu du mur NORD.

Malheureusement pour lui, ce donjon était construit au bord d'une falaise et, suite à un éboulement, la partie EST a disparu. Aide ATTIGNYEN à retrouver son trésor.

8. Equation

Soit *n* entier naturel supérieur ou égal à 2.

L'équation $x^n = \sum_{k=0}^{n-1} x^k$ admet-elle une unique racine positive ξ



9. Repère

Tracer un repère orthonormé dans le quel la droite cicontre a pour équation 3x+y-4=0

10. Demi-aire

Soit ABC un triangle quelconque, I un point de [BC] . Peut-on construire M sur [AC] tel que l'aire du triangle IMC soit égale à la moitié de l'aire du triangle ABC \column ?

