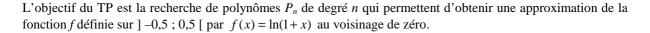
Approximation d'une fonction par des polynômes



On appelle (C) la courbe d'équation $y = \ln(1+x)$.

On appelle (C_0) , (C_1) , (C_2) ,..., (C_n) les courbes d'équation $y = P_n(x)$ où P_n est le polynôme de degré n obtenu.

Tracé de la courbe (C):

Sur votre calculatrice ou à l'aide d'un tableur, tracer la courbe (C) dans une fenêtre définie par $x \in [-0.5; 0.5]$ et $y \in [-0.5; 0.5]$.

Sur votre feuille, donner l'allure de la courbe (C).

Polynôme *P*₀:

- 1. Quelle condition doit vérifier P_0 pour que les courbes (C) et (C₀) coïncident en O?
- 2. En déduire P_0 et tracer sur votre calculatrice ou à l'aide d'un tableur (C_0) .

$$P_0(x) = \dots$$

Polynôme P_1 :

On cherche des réels a_0 et a_1 tels que $P_1(x) = a_0 + a_1 x$.

- 1. Quelles conditions doit vérifier P_1 pour que les courbes (C) et (C₁) « coïncident au mieux »? En déduire les valeurs de a_0 et a_1 puis le polynôme P_1 .
- 2. Tracer (C_1) .

$$P_1(x) = \dots$$

3. Quelle est l'erreur maximale commise en remplaçant ln(1+x) par $P_1(x)$ sur l'intervalle [-0,5; 0,5]? (on pourra utiliser le tableau donné en annexe).

Polynôme P_2 :

On cherche le polynôme $P_2(x) = a_0 + a_1 x + a_2 x^2$.

- 1. En utilisant les conditions imposées à P_1 , déterminer a_0 et a_1 .
- 2. Peut-on déterminer le signe de a_2 graphiquement ?
- 3. A l'aide de votre calculatrice ou à l'aide d'un tableur, déterminer la valeur de a_2 qui paraît le mieux convenir pour que les courbes (C) et (C₂) coïncident au mieux au voisinage de zéro. Quelle valeur de a_2 obtient-on?
- 4. Tracer (C_2) .

$$P_2(x) = \dots$$

5. Quelle est l'erreur maximale commise en remplaçant ln(1+x) par $P_2(x)$ sur l'intervalle [-0.5; 0.5]?

Polynômes P₃, P₄, P₅:

1. En poursuivant la démarche amorcée dans les questions précédentes, déterminer des polynômes P_3 , P_4 , P_5 et tracer les courbes correspondantes.

P_3	g(x)	=	 	 						• •
P_4	(x)	=	 	 						
_										

 $P_5(x) = \dots$

2. Quelle est l'erreur maximale commise en confondant ln(1+x) avec $P_1(x)$, $P_2(x)$, $P_3(x)$ et $P_4(x)$ sur l'intervalle [-0.5; 0.5]?

Preuves:

- 1. Montrer que pour tout *x* différent de -1: $\frac{1}{1+x} = 1 x + x^2 x^3 + \frac{x^4}{1+x}$.
- 2. En déduire que pour tout x positif : $0 \le \frac{1}{1+x} 1 + x x^2 + x^3 \le x^4$, puis en déduire un encadrement de $\ln(1+x)$.
- 3. Montrer que, pour tout réel x tel que $0 \le x \le 5.10^{-2}$, l'encadrement obtenu est d'amplitude inférieure à 7.10^{-8} .
- 4. En déduire un encadrement d'amplitude inférieure à 7.10^{-8} de $ln(\frac{25}{24})$. Que propose la calculatrice ?

Annexe

Qualité des approximations obtenues :

Quarte des approxime				
x	$P_1(x)$	$P_2(x)$	$P_3(x)$	$P_4(x)$
- 0,5				
- 0,4				
-0,3				
- 0,2				

Commentaires:

La première partie, à part la recherche de P_0 et P_1 , utilise la calculatrice ou le tableur uniquement comme un outil de conjecture. L'élève réalise une expérience et il n'obtient pas nécessairement le « bon » polynôme. Je n'ai pas de meilleure expression que « coïncider au mieux » pour décrire le polynôme attendu.

Cette première partie permet de donner du sens à la deuxième partie : les polynômes proposés ne sont pas tirés complètement du chapeau.

L'approximation demandée à la fin permet de réfléchir à la précision des résultats proposés par une calculatrice.

Barême : 2 points pour la partie conjecture (1 point pour P_0 et P_1), 2 points pour la partie preuve.