Suite homographique

Soit la suite (u_n) définie par $u_0 = 3$ et $u_{n+1} = \frac{2u_n}{2-u}$.

- 1. Calculer les termes u_1 et u_2 .
- 2. La suite (u_n) est-elle arithmétique $\stackrel{?}{\varsigma}$ géométrique $\stackrel{?}{\varsigma}$
- 3. Représenter graphiquement les premiers termes de u_n (n en abscisse, u_n en ordonnée). Quelles conjectures émettez-vous ?
- 4. On admet que, pour tout n, u_n n'est pas nul. On pose $v_n = 2 \frac{1}{u}$.
- a. Calculer v_0 , v_1 , et v_2 .
- b. Calculer v_{n+1} en fonction de v_n . En déduire que (v_n) est une suite arithmétique.
- c. Exprimer v_n en fonction de n. En déduire u_n en fonction de n.
- d. Pouvez vous valider les conjectures du 3 ?

Ouaip, c'est une suite mon gars!

On considère la suite (u_n) définie par $u_1 = -1$ et $u_{n+1} = \frac{(n+1)(u_n - 3n)}{u_n}$

- 1. Calculer u_2 , u_3 , u_4 .
- 2. Démontrer que la suite (v_n) définie par $v_n = \frac{u_n}{n}$ est une suite arithmétique dont on précisera le premier terme et la raison.
- 3. En déduire l'expression de v_n en fonction de n, puis l'expression de u_n en fonction de n.
- 4. En déduire que la suite (u_n) est strictement monotone et bornée. Limite ξ

Y fait chô

On admet que si on mélange deux litres d'eau à la température T et un litre d'eau à la température T', on obtient deux litres d'eau à la température $\frac{2T+T'}{2}$.

On dispose de deux litres d'eau à la température $T_0=80\,{}^{\circ}\mathrm{C}$; on lui ajoute un litre d'eau à la température 20 °C; on obtient 3 litres à la température T_1 .

On répète le processus : on prélève deux litres sur les 3 obtenus, auxquels on ajoute un litre d'eau à la température 20 °C; on obtient 3 litres à la température T_3 .

- 1. On fabrique ainsi une suite (T_n) telle que T_{n+1} est la température du mélange de 2 litres d'eau à la température T_n et d'un litre d'eau à la température 20°C.
- a. Calculer T_1 , T_2 et T_3 .
- b. Exprimer T_{n+1} en fonction de T_n .
- 2. Soit la suite (u_n) telle que pour tout n, $u_n = T_n 20$.
- a. Démontrer que la suite (u_n) est une suite géométrique.
- b. Exprimer u_n puis T_n en fonction de l'entier n.
- d. À l'aide d'une calculatrice, déterminer le premier rang n à partir duquel $T_n \le 21$.